在最终一致的数据存储上进行声明式编程

K. Sivaramakrishnan, Gowtham Kaki, S. Jagannathan
{"title":"在最终一致的数据存储上进行声明式编程","authors":"K. Sivaramakrishnan, Gowtham Kaki, S. Jagannathan","doi":"10.1145/2737924.2737981","DOIUrl":null,"url":null,"abstract":"User-facing online services utilize geo-distributed data stores to minimize latency and tolerate partial failures, with the intention of providing a fast, always-on experience. However, geo-distribution does not come for free; application developers have to contend with weak consistency behaviors, and the lack of abstractions to composably construct high-level replicated data types, necessitating the need for complex application logic and invariably exposing inconsistencies to the user. Some commercial distributed data stores and several academic proposals provide a lattice of consistency levels, with stronger consistency guarantees incurring increased latency and throughput costs. However, correctly assigning the right consistency level for an operation requires subtle reasoning and is often an error-prone task. In this paper, we present QUELEA, a declarative programming model for eventually consistent data stores (ECDS), equipped with a contract language, capable of specifying fine-grained application - level consistency properties. A contract enforcement system analyses contracts, and automatically generates the appropriate consistency protocol for the method protected by the contract. We describe an implementation of QUELEA on top of an off-the-shelf ECDS that provides support for coordination-free transactions. Several benchmarks including two large web applications, illustrate the effectiveness of our approach.","PeriodicalId":104101,"journal":{"name":"Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"95","resultStr":"{\"title\":\"Declarative programming over eventually consistent data stores\",\"authors\":\"K. Sivaramakrishnan, Gowtham Kaki, S. Jagannathan\",\"doi\":\"10.1145/2737924.2737981\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"User-facing online services utilize geo-distributed data stores to minimize latency and tolerate partial failures, with the intention of providing a fast, always-on experience. However, geo-distribution does not come for free; application developers have to contend with weak consistency behaviors, and the lack of abstractions to composably construct high-level replicated data types, necessitating the need for complex application logic and invariably exposing inconsistencies to the user. Some commercial distributed data stores and several academic proposals provide a lattice of consistency levels, with stronger consistency guarantees incurring increased latency and throughput costs. However, correctly assigning the right consistency level for an operation requires subtle reasoning and is often an error-prone task. In this paper, we present QUELEA, a declarative programming model for eventually consistent data stores (ECDS), equipped with a contract language, capable of specifying fine-grained application - level consistency properties. A contract enforcement system analyses contracts, and automatically generates the appropriate consistency protocol for the method protected by the contract. We describe an implementation of QUELEA on top of an off-the-shelf ECDS that provides support for coordination-free transactions. Several benchmarks including two large web applications, illustrate the effectiveness of our approach.\",\"PeriodicalId\":104101,\"journal\":{\"name\":\"Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"95\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2737924.2737981\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2737924.2737981","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 95

摘要

面向用户的在线服务利用地理分布式数据存储来最小化延迟和容忍部分故障,目的是提供快速、始终在线的体验。然而,地理分布并不是免费的;应用程序开发人员必须应对弱一致性行为,以及缺乏可组合构造高级复制数据类型的抽象,这就需要复杂的应用程序逻辑,并且不可避免地向用户暴露不一致性。一些商业分布式数据存储和一些学术建议提供了一致性级别的格,具有更强的一致性保证,从而增加了延迟和吞吐量成本。然而,正确地为操作分配正确的一致性级别需要微妙的推理,并且通常是一项容易出错的任务。在本文中,我们提出了QUELEA,一个用于最终一致数据存储(ECDS)的声明性编程模型,配备了契约语言,能够指定细粒度的应用级一致性属性。合同执行系统分析合同,并自动为受合同保护的方法生成适当的一致性协议。我们描述了在现成的ECDS之上的QUELEA实现,该ECDS提供了对无协调事务的支持。包括两个大型web应用程序在内的几个基准测试说明了我们的方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Declarative programming over eventually consistent data stores
User-facing online services utilize geo-distributed data stores to minimize latency and tolerate partial failures, with the intention of providing a fast, always-on experience. However, geo-distribution does not come for free; application developers have to contend with weak consistency behaviors, and the lack of abstractions to composably construct high-level replicated data types, necessitating the need for complex application logic and invariably exposing inconsistencies to the user. Some commercial distributed data stores and several academic proposals provide a lattice of consistency levels, with stronger consistency guarantees incurring increased latency and throughput costs. However, correctly assigning the right consistency level for an operation requires subtle reasoning and is often an error-prone task. In this paper, we present QUELEA, a declarative programming model for eventually consistent data stores (ECDS), equipped with a contract language, capable of specifying fine-grained application - level consistency properties. A contract enforcement system analyses contracts, and automatically generates the appropriate consistency protocol for the method protected by the contract. We describe an implementation of QUELEA on top of an off-the-shelf ECDS that provides support for coordination-free transactions. Several benchmarks including two large web applications, illustrate the effectiveness of our approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信