掺sm 71PMN-29PT陶瓷的电学和电热性能研究

Peng Chen, Ying Yang, Tingrui He, Yiping Wang
{"title":"掺sm 71PMN-29PT陶瓷的电学和电热性能研究","authors":"Peng Chen, Ying Yang, Tingrui He, Yiping Wang","doi":"10.1109/SPAWDA48812.2019.9019273","DOIUrl":null,"url":null,"abstract":"Sm-doped 0.71Pb(Mg1/3Nb2/3)O3–0.29PbTiO3 ceramics (denoted as xSm-71PMN–29PT, 0 ≤ x ≤ 5 mol. %) were synthesized by sol-gel method. The effects of Sm-doping on the electrical and electrocaloric properties of the 71PMN-29PT were investigated. Among all samples prepared, 3Sm-71PMN–29PT displays the optimal piezoelectric and dielectric properties – piezoelectric coefficient d33 of 1040 pC/N, relative dielectric constant εr of 8078, electromechanical coupling factor kp of 0.60. With the increase of Sm doping amount, the dielectric-peak temperature Tm decreases from 405 K to 318 K. Moreover, the electrocaloric (EC) effect in the related ceramics was calculated via indirect method. Under the electric field of 40 kV/cm, the EC temperature change (ΔT) reach their maximal values when the testing temperature is near Tm. The largest electrocaloric response is found in 71PMN–29PT ceramic at T = 428 K with ΔT = 1.49 K, and the largest room temperature electrocaloric response is found in 5Sm-71PMN–29PT ceramic with ΔT = 0.77 K. The excellent comprehensive electrical properties and room temperature electrocaloric performances make Sm-doped 71PMN–29PT ceramics to be one of the most promising candidates for solid- refrigerator applications.","PeriodicalId":208819,"journal":{"name":"2019 14th Symposium on Piezoelectrcity, Acoustic Waves and Device Applications (SPAWDA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Investigation of Electric and Electrocaloric Properties for Sm-Doped 71PMN–29PT Ceramics\",\"authors\":\"Peng Chen, Ying Yang, Tingrui He, Yiping Wang\",\"doi\":\"10.1109/SPAWDA48812.2019.9019273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sm-doped 0.71Pb(Mg1/3Nb2/3)O3–0.29PbTiO3 ceramics (denoted as xSm-71PMN–29PT, 0 ≤ x ≤ 5 mol. %) were synthesized by sol-gel method. The effects of Sm-doping on the electrical and electrocaloric properties of the 71PMN-29PT were investigated. Among all samples prepared, 3Sm-71PMN–29PT displays the optimal piezoelectric and dielectric properties – piezoelectric coefficient d33 of 1040 pC/N, relative dielectric constant εr of 8078, electromechanical coupling factor kp of 0.60. With the increase of Sm doping amount, the dielectric-peak temperature Tm decreases from 405 K to 318 K. Moreover, the electrocaloric (EC) effect in the related ceramics was calculated via indirect method. Under the electric field of 40 kV/cm, the EC temperature change (ΔT) reach their maximal values when the testing temperature is near Tm. The largest electrocaloric response is found in 71PMN–29PT ceramic at T = 428 K with ΔT = 1.49 K, and the largest room temperature electrocaloric response is found in 5Sm-71PMN–29PT ceramic with ΔT = 0.77 K. The excellent comprehensive electrical properties and room temperature electrocaloric performances make Sm-doped 71PMN–29PT ceramics to be one of the most promising candidates for solid- refrigerator applications.\",\"PeriodicalId\":208819,\"journal\":{\"name\":\"2019 14th Symposium on Piezoelectrcity, Acoustic Waves and Device Applications (SPAWDA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 14th Symposium on Piezoelectrcity, Acoustic Waves and Device Applications (SPAWDA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPAWDA48812.2019.9019273\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 14th Symposium on Piezoelectrcity, Acoustic Waves and Device Applications (SPAWDA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAWDA48812.2019.9019273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

采用溶胶-凝胶法制备了掺杂sm的0.71Pb(Mg1/3Nb2/3) O3-0.29PbTiO3陶瓷(记为xSm-71PMN-29PT, 0≤x≤5 mol. %)。研究了sm掺杂对71PMN-29PT的电学和电热性能的影响。在所制备的样品中,3Sm-71PMN-29PT具有最佳的压电和介电性能,压电系数d33为1040 pC/N,相对介电常数εr为8078,机电耦合系数kp为0.60。随着Sm掺杂量的增加,介电峰温度从405 K降低到318 K。并通过间接法计算了相关陶瓷的电热效应。在40 kV/cm电场下,当测试温度接近Tm时,EC温度变化(ΔT)达到最大值。71PMN-29PT陶瓷在T = 428 K时电热响应最大,ΔT = 1.49 K; 5Sm-71PMN-29PT陶瓷室温电热响应最大,ΔT = 0.77 K。掺杂sm的71PMN-29PT陶瓷具有优异的综合电学性能和室温电热性能,是固体冰箱应用中最有前途的候选材料之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation of Electric and Electrocaloric Properties for Sm-Doped 71PMN–29PT Ceramics
Sm-doped 0.71Pb(Mg1/3Nb2/3)O3–0.29PbTiO3 ceramics (denoted as xSm-71PMN–29PT, 0 ≤ x ≤ 5 mol. %) were synthesized by sol-gel method. The effects of Sm-doping on the electrical and electrocaloric properties of the 71PMN-29PT were investigated. Among all samples prepared, 3Sm-71PMN–29PT displays the optimal piezoelectric and dielectric properties – piezoelectric coefficient d33 of 1040 pC/N, relative dielectric constant εr of 8078, electromechanical coupling factor kp of 0.60. With the increase of Sm doping amount, the dielectric-peak temperature Tm decreases from 405 K to 318 K. Moreover, the electrocaloric (EC) effect in the related ceramics was calculated via indirect method. Under the electric field of 40 kV/cm, the EC temperature change (ΔT) reach their maximal values when the testing temperature is near Tm. The largest electrocaloric response is found in 71PMN–29PT ceramic at T = 428 K with ΔT = 1.49 K, and the largest room temperature electrocaloric response is found in 5Sm-71PMN–29PT ceramic with ΔT = 0.77 K. The excellent comprehensive electrical properties and room temperature electrocaloric performances make Sm-doped 71PMN–29PT ceramics to be one of the most promising candidates for solid- refrigerator applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信