医学图像的统计分割及其三维可视化

Myungeun Lee, Soonyoung Park, Wanhyun Cho, Soohyung Kim
{"title":"医学图像的统计分割及其三维可视化","authors":"Myungeun Lee, Soonyoung Park, Wanhyun Cho, Soohyung Kim","doi":"10.1109/ISITC.2007.83","DOIUrl":null,"url":null,"abstract":"We present an automatic segmentation and its visualization method for medical image. First, the statistical segmentation consists of two steps: number detection of clusters composing an image and parameter estimation of a statistical model. Here we use the morphological operations to determine automatically the number of clusters or objects composing a given image without any prior knowledge and adopt the Gaussian mixture model (GMM) to characterize an image statistically. Next, the Deterministic Annealing Expectation Maximization algorithm is employed to estimate the parameters of the GMM. Finally, we use a modified marching cubes algorithm to visualize the extracted images. The experimental results show that our proposed method can extract and visualize exactly the human organs from the CT image.","PeriodicalId":394071,"journal":{"name":"2007 International Symposium on Information Technology Convergence (ISITC 2007)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Segmentation of Medical Image Using a Statistical Technique and Its 3D Visualization\",\"authors\":\"Myungeun Lee, Soonyoung Park, Wanhyun Cho, Soohyung Kim\",\"doi\":\"10.1109/ISITC.2007.83\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an automatic segmentation and its visualization method for medical image. First, the statistical segmentation consists of two steps: number detection of clusters composing an image and parameter estimation of a statistical model. Here we use the morphological operations to determine automatically the number of clusters or objects composing a given image without any prior knowledge and adopt the Gaussian mixture model (GMM) to characterize an image statistically. Next, the Deterministic Annealing Expectation Maximization algorithm is employed to estimate the parameters of the GMM. Finally, we use a modified marching cubes algorithm to visualize the extracted images. The experimental results show that our proposed method can extract and visualize exactly the human organs from the CT image.\",\"PeriodicalId\":394071,\"journal\":{\"name\":\"2007 International Symposium on Information Technology Convergence (ISITC 2007)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Symposium on Information Technology Convergence (ISITC 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISITC.2007.83\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Symposium on Information Technology Convergence (ISITC 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISITC.2007.83","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

提出了一种医学图像的自动分割及其可视化方法。首先,统计分割包括两个步骤:组成图像的聚类数量检测和统计模型的参数估计。在这里,我们使用形态学操作来自动确定组成给定图像的簇或对象的数量,而不需要任何先验知识,并采用高斯混合模型(GMM)对图像进行统计表征。其次,采用确定性退火期望最大化算法估计GMM的参数。最后,我们使用改进的行军立方体算法对提取的图像进行可视化。实验结果表明,该方法能够准确地从CT图像中提取和显示人体器官。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Segmentation of Medical Image Using a Statistical Technique and Its 3D Visualization
We present an automatic segmentation and its visualization method for medical image. First, the statistical segmentation consists of two steps: number detection of clusters composing an image and parameter estimation of a statistical model. Here we use the morphological operations to determine automatically the number of clusters or objects composing a given image without any prior knowledge and adopt the Gaussian mixture model (GMM) to characterize an image statistically. Next, the Deterministic Annealing Expectation Maximization algorithm is employed to estimate the parameters of the GMM. Finally, we use a modified marching cubes algorithm to visualize the extracted images. The experimental results show that our proposed method can extract and visualize exactly the human organs from the CT image.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信