{"title":"DC-DC变换器中大功率高频电感的磁性材料选择","authors":"M. Ryłko, K. J. Hartnett, J. Hayes, M. Egan","doi":"10.1109/APEC.2009.4802955","DOIUrl":null,"url":null,"abstract":"Dc-dc converter size and efficiency are driving factors in industrial, aerospace and automotive applications. Thus, optimal component selection is essential for a compact design. The inductor often appears as the converter's largest component. This paper presents analytical and experimental comparisons of the magnetic materials used in a practical design. The investigation is concerned with magnetic material selection for a dc-dc power inductor in the medium (20 kHz) to high (150 kHz) frequency range and the low (1%) to high (220%) current ripple range. The materials under investigation are iron-based amorphous metal, silicon steel, nanocrystalline, ferrite, powdered iron and gap-less powder materials. A newly developed silicon steel material from JFE-Steel Co. is presented. A novel material comparison which includes thermal conductivity and saturation capability is proposed. The area product analysis for material comparison is presented for 10 kW dc-dc inductor design examples. The variation of core power loss with dc-bias is experimentally investigated for different materials. A 1.25 kW half-bridge dc-dc converter is used in experimental validation.","PeriodicalId":200366,"journal":{"name":"2009 Twenty-Fourth Annual IEEE Applied Power Electronics Conference and Exposition","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"90","resultStr":"{\"title\":\"Magnetic Material Selection for High Power High Frequency Inductors in DC-DC Converters\",\"authors\":\"M. Ryłko, K. J. Hartnett, J. Hayes, M. Egan\",\"doi\":\"10.1109/APEC.2009.4802955\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dc-dc converter size and efficiency are driving factors in industrial, aerospace and automotive applications. Thus, optimal component selection is essential for a compact design. The inductor often appears as the converter's largest component. This paper presents analytical and experimental comparisons of the magnetic materials used in a practical design. The investigation is concerned with magnetic material selection for a dc-dc power inductor in the medium (20 kHz) to high (150 kHz) frequency range and the low (1%) to high (220%) current ripple range. The materials under investigation are iron-based amorphous metal, silicon steel, nanocrystalline, ferrite, powdered iron and gap-less powder materials. A newly developed silicon steel material from JFE-Steel Co. is presented. A novel material comparison which includes thermal conductivity and saturation capability is proposed. The area product analysis for material comparison is presented for 10 kW dc-dc inductor design examples. The variation of core power loss with dc-bias is experimentally investigated for different materials. A 1.25 kW half-bridge dc-dc converter is used in experimental validation.\",\"PeriodicalId\":200366,\"journal\":{\"name\":\"2009 Twenty-Fourth Annual IEEE Applied Power Electronics Conference and Exposition\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"90\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Twenty-Fourth Annual IEEE Applied Power Electronics Conference and Exposition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APEC.2009.4802955\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Twenty-Fourth Annual IEEE Applied Power Electronics Conference and Exposition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APEC.2009.4802955","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Magnetic Material Selection for High Power High Frequency Inductors in DC-DC Converters
Dc-dc converter size and efficiency are driving factors in industrial, aerospace and automotive applications. Thus, optimal component selection is essential for a compact design. The inductor often appears as the converter's largest component. This paper presents analytical and experimental comparisons of the magnetic materials used in a practical design. The investigation is concerned with magnetic material selection for a dc-dc power inductor in the medium (20 kHz) to high (150 kHz) frequency range and the low (1%) to high (220%) current ripple range. The materials under investigation are iron-based amorphous metal, silicon steel, nanocrystalline, ferrite, powdered iron and gap-less powder materials. A newly developed silicon steel material from JFE-Steel Co. is presented. A novel material comparison which includes thermal conductivity and saturation capability is proposed. The area product analysis for material comparison is presented for 10 kW dc-dc inductor design examples. The variation of core power loss with dc-bias is experimentally investigated for different materials. A 1.25 kW half-bridge dc-dc converter is used in experimental validation.