{"title":"PENYELESAIAN MASALAH TRANSPORTASI UNTUK MENCARI SOLUSI OPTIMAL DENGAN PENDEKATAN MINIMUM SPANNING TREE (MST) MENGGUNAKAN ALGORITMA KRUSKAL DAN ALGORITMA PRIM","authors":"Yusufiani Nurlinawati Dili","doi":"10.15575/kubik.v6i1.13907","DOIUrl":null,"url":null,"abstract":"Penelitian ini membahas tentang penyelesaian masalah transportasi dengan pendekatan Minimum Spanning Tree (MST) menggunakan algoritma Kruskal dan algoritma Prim untuk mencari solusi optimal. Algoritma Kruskal dan algoritma Prim merupakan algoritma dalam teori graf untuk mencari Minimum Spanning Tree (MST). Langkah algoritma Kruskal yaitu mengurutkan biaya dari yang terkecil hingga terbesar. Selanjutnya, pilih biaya yang paling terkecil. Kemudian, lakukan perhitungan dengan melihat sumber persediaan dan permintaan di setiap tujuan sampai semuanya terpenuhi, sehingga terlihat bentuk Minimum Spanning Tree (MST) dari algoritma Kruskal. Sedangkan langkah algoritma Prim yaitu dengan memilih sembarang titik atau sumber. Selanjutnya, pilih active edge dengan biaya terkecil. Kemudian, lakukan perhitungan dengan melihat sumber persediaan dan permintaan di setiap tujuan sampai semuanya terpenuhi, sehingga terlihat bentuk Minimum Spanning Tree (MST) dari algoritma Prim. Bentuk dari Minimum Spanning Tree (MST) menghasilkan solusi yang optimal. Dari hasil penelitian ini, pendekatan Minimum Spanning Tree (MST) dengan algoritma Prim yang lebih unggul. ","PeriodicalId":300313,"journal":{"name":"Kubik: Jurnal Publikasi Ilmiah Matematika","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kubik: Jurnal Publikasi Ilmiah Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15575/kubik.v6i1.13907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
摘要
这项研究涉及使用Kruskal算法和Prim算法来解决最优解。Kruskal算法和Prim算法是一个算法,在算法中搜索最小的Spanning Tree (MST)。Kruskal算法的步骤是将成本从最小到最大。接下来,选择最小的成本。然后,通过查看每个目标的供应来源和需求来进行计算,直到它们得到满足,从而从Kruskal算法中获得最小形式的Spanning Tree。而Prim算法的步骤是通过选择任意的点或源。接下来,选择最少成本的活动边缘。然后,通过查看每个目标的供应和需求来源来进行计算,直到它们得到满足,所以从Prim算法中可以看到最小形式的Spanning Tree,最小形式的Spanning Tree产生最佳解决方案。根据这项研究,最小的Spanning Tree方法与Prim高级算法。
PENYELESAIAN MASALAH TRANSPORTASI UNTUK MENCARI SOLUSI OPTIMAL DENGAN PENDEKATAN MINIMUM SPANNING TREE (MST) MENGGUNAKAN ALGORITMA KRUSKAL DAN ALGORITMA PRIM
Penelitian ini membahas tentang penyelesaian masalah transportasi dengan pendekatan Minimum Spanning Tree (MST) menggunakan algoritma Kruskal dan algoritma Prim untuk mencari solusi optimal. Algoritma Kruskal dan algoritma Prim merupakan algoritma dalam teori graf untuk mencari Minimum Spanning Tree (MST). Langkah algoritma Kruskal yaitu mengurutkan biaya dari yang terkecil hingga terbesar. Selanjutnya, pilih biaya yang paling terkecil. Kemudian, lakukan perhitungan dengan melihat sumber persediaan dan permintaan di setiap tujuan sampai semuanya terpenuhi, sehingga terlihat bentuk Minimum Spanning Tree (MST) dari algoritma Kruskal. Sedangkan langkah algoritma Prim yaitu dengan memilih sembarang titik atau sumber. Selanjutnya, pilih active edge dengan biaya terkecil. Kemudian, lakukan perhitungan dengan melihat sumber persediaan dan permintaan di setiap tujuan sampai semuanya terpenuhi, sehingga terlihat bentuk Minimum Spanning Tree (MST) dari algoritma Prim. Bentuk dari Minimum Spanning Tree (MST) menghasilkan solusi yang optimal. Dari hasil penelitian ini, pendekatan Minimum Spanning Tree (MST) dengan algoritma Prim yang lebih unggul.