光伏组件电致发光图像中微裂纹的检测

Natasha Mathias, F. Shaikh, Chirayu Thakur, Sweekrithi Shetty, Pratibha R. Dumane, Dr. Satishkumar Chavan
{"title":"光伏组件电致发光图像中微裂纹的检测","authors":"Natasha Mathias, F. Shaikh, Chirayu Thakur, Sweekrithi Shetty, Pratibha R. Dumane, Dr. Satishkumar Chavan","doi":"10.2139/ssrn.3563821","DOIUrl":null,"url":null,"abstract":"This paper presents detection of micro-cracks in solar cells using Electroluminescence (EL) images. The preprocessing step in this work involved separation of solar panel section from background of EL image, use of perspective transformation, and separating individual solar cells from the Photovoltaic (PV) panel. Discrete Wavelet Transform (DWT) and Stationary Wavelet Transform (SWT) are used to extract textural features from these solar cells. These features were then used for classification of solar cells into cracked and non-cracked cells using Support Vector Machine (SVM) and Back Propagation Neural Network (BPNN). The networks were trained with a dataset of 2000 EL images and tested with a dataset of 300 test images. The percentage classification accuracy obtained is 92.67% and 93.67% using SVM and BPNN, respectively.","PeriodicalId":136014,"journal":{"name":"Sustainable Technology eJournal","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Detection of Micro-Cracks in Electroluminescence Images of Photovoltaic Modules\",\"authors\":\"Natasha Mathias, F. Shaikh, Chirayu Thakur, Sweekrithi Shetty, Pratibha R. Dumane, Dr. Satishkumar Chavan\",\"doi\":\"10.2139/ssrn.3563821\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents detection of micro-cracks in solar cells using Electroluminescence (EL) images. The preprocessing step in this work involved separation of solar panel section from background of EL image, use of perspective transformation, and separating individual solar cells from the Photovoltaic (PV) panel. Discrete Wavelet Transform (DWT) and Stationary Wavelet Transform (SWT) are used to extract textural features from these solar cells. These features were then used for classification of solar cells into cracked and non-cracked cells using Support Vector Machine (SVM) and Back Propagation Neural Network (BPNN). The networks were trained with a dataset of 2000 EL images and tested with a dataset of 300 test images. The percentage classification accuracy obtained is 92.67% and 93.67% using SVM and BPNN, respectively.\",\"PeriodicalId\":136014,\"journal\":{\"name\":\"Sustainable Technology eJournal\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Technology eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3563821\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Technology eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3563821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文介绍了利用电致发光(EL)图像检测太阳能电池微裂纹的方法。该工作的预处理步骤包括将太阳能电池板部分与EL图像背景分离,使用透视变换,以及将单个太阳能电池与光伏(PV)电池板分离。采用离散小波变换(DWT)和平稳小波变换(SWT)提取太阳能电池的纹理特征。然后使用支持向量机(SVM)和反向传播神经网络(BPNN)将这些特征用于将太阳能电池分类为裂纹和非裂纹电池。该网络使用2000张EL图像数据集进行训练,并使用300张测试图像数据集进行测试。使用SVM和BPNN得到的分类准确率分别为92.67%和93.67%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detection of Micro-Cracks in Electroluminescence Images of Photovoltaic Modules
This paper presents detection of micro-cracks in solar cells using Electroluminescence (EL) images. The preprocessing step in this work involved separation of solar panel section from background of EL image, use of perspective transformation, and separating individual solar cells from the Photovoltaic (PV) panel. Discrete Wavelet Transform (DWT) and Stationary Wavelet Transform (SWT) are used to extract textural features from these solar cells. These features were then used for classification of solar cells into cracked and non-cracked cells using Support Vector Machine (SVM) and Back Propagation Neural Network (BPNN). The networks were trained with a dataset of 2000 EL images and tested with a dataset of 300 test images. The percentage classification accuracy obtained is 92.67% and 93.67% using SVM and BPNN, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信