公交乘客始发-目的地矩阵估计与效率评价

Mirai Tanaka, Takuya Kimata, T. Arai
{"title":"公交乘客始发-目的地矩阵估计与效率评价","authors":"Mirai Tanaka, Takuya Kimata, T. Arai","doi":"10.1109/IIAI-AAI.2016.11","DOIUrl":null,"url":null,"abstract":"In analyzing and evaluating the efficiency of a transportation system, origin-destination matrices are important. In this paper, we propose an optimization model to estimate origin-destination matrices. The proposed model is easily handled since it is a convex quadratic optimization model. We validate the proposed model using numerical results from real-world data. In addition, we use our model to evaluate the efficiency of a real-world bus service.","PeriodicalId":272739,"journal":{"name":"2016 5th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Estimation of Passenger Origin-Destination Matrices and Efficiency Evaluation of Public Transportation\",\"authors\":\"Mirai Tanaka, Takuya Kimata, T. Arai\",\"doi\":\"10.1109/IIAI-AAI.2016.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In analyzing and evaluating the efficiency of a transportation system, origin-destination matrices are important. In this paper, we propose an optimization model to estimate origin-destination matrices. The proposed model is easily handled since it is a convex quadratic optimization model. We validate the proposed model using numerical results from real-world data. In addition, we use our model to evaluate the efficiency of a real-world bus service.\",\"PeriodicalId\":272739,\"journal\":{\"name\":\"2016 5th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 5th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IIAI-AAI.2016.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 5th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IIAI-AAI.2016.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在分析和评价运输系统的效率时,出发地-目的地矩阵是很重要的。本文提出了一种估计起点-目的地矩阵的优化模型。该模型是一个凸二次优化模型,易于处理。我们使用实际数据的数值结果验证了所提出的模型。此外,我们还使用我们的模型来评估现实世界中公交服务的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimation of Passenger Origin-Destination Matrices and Efficiency Evaluation of Public Transportation
In analyzing and evaluating the efficiency of a transportation system, origin-destination matrices are important. In this paper, we propose an optimization model to estimate origin-destination matrices. The proposed model is easily handled since it is a convex quadratic optimization model. We validate the proposed model using numerical results from real-world data. In addition, we use our model to evaluate the efficiency of a real-world bus service.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信