智能腕带操作手腕康复机器人

Sunit Thakur, Subir Das, S. Bhaumik
{"title":"智能腕带操作手腕康复机器人","authors":"Sunit Thakur, Subir Das, S. Bhaumik","doi":"10.1109/ASPCON49795.2020.9276666","DOIUrl":null,"url":null,"abstract":"Many people in the world are increasingly suffering from stroke issues. Survivors often tend to suffer from hemiplegia or related conditions, in which some portion of their body may be rendered useless. The wrist is one such part. But this injury can be recovered by conventional rehabilitation processes like physical therapy. In this paper, a device for robot-assisted physical therapy is presented for wrist rehabilitation. It can overcome the lack of availability of physical therapists and reduce the cost incurred in long-term therapy. Also, it can provide accurate regular exercises without missing any step even in the absence of the therapist. These two DOF robotic devices can learn the physical exercise (i.e. wrist-based movements) from the trained therapist through an electronic smart-band. It can also replicate these exercises when the patient wears this device over his/her wrist. Here, an accelerometer sensor and a magnetometer sensor-based smart-band are used for recognizing the wrist motions like flexion, extension, abduction, and adduction. The objective of this preliminary work is to drive accurately all the motor actuators which are attached to the robot and calibrate the feedback sensor to reflect the movement of the smart-band. In the future, this robot can be used as a teleoperated rehabilitation device through an IoT platform.","PeriodicalId":193814,"journal":{"name":"2020 IEEE Applied Signal Processing Conference (ASPCON)","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Smart-Band Operated Wrist Rehabilitation Robot\",\"authors\":\"Sunit Thakur, Subir Das, S. Bhaumik\",\"doi\":\"10.1109/ASPCON49795.2020.9276666\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many people in the world are increasingly suffering from stroke issues. Survivors often tend to suffer from hemiplegia or related conditions, in which some portion of their body may be rendered useless. The wrist is one such part. But this injury can be recovered by conventional rehabilitation processes like physical therapy. In this paper, a device for robot-assisted physical therapy is presented for wrist rehabilitation. It can overcome the lack of availability of physical therapists and reduce the cost incurred in long-term therapy. Also, it can provide accurate regular exercises without missing any step even in the absence of the therapist. These two DOF robotic devices can learn the physical exercise (i.e. wrist-based movements) from the trained therapist through an electronic smart-band. It can also replicate these exercises when the patient wears this device over his/her wrist. Here, an accelerometer sensor and a magnetometer sensor-based smart-band are used for recognizing the wrist motions like flexion, extension, abduction, and adduction. The objective of this preliminary work is to drive accurately all the motor actuators which are attached to the robot and calibrate the feedback sensor to reflect the movement of the smart-band. In the future, this robot can be used as a teleoperated rehabilitation device through an IoT platform.\",\"PeriodicalId\":193814,\"journal\":{\"name\":\"2020 IEEE Applied Signal Processing Conference (ASPCON)\",\"volume\":\"91 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Applied Signal Processing Conference (ASPCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASPCON49795.2020.9276666\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Applied Signal Processing Conference (ASPCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASPCON49795.2020.9276666","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

世界上越来越多的人受到中风的困扰。幸存者往往患有偏瘫或相关疾病,其中身体的某些部分可能变得无用。手腕就是这样一个部位。但这种损伤可以通过物理治疗等传统康复过程恢复。本文介绍了一种用于腕部康复的机器人辅助物理治疗装置。它可以克服缺乏可用的物理治疗师,并减少长期治疗的费用。此外,即使在没有治疗师的情况下,它也可以提供准确的常规练习,而不会遗漏任何步骤。这两个DOF机器人设备可以通过电子智能手环从训练有素的治疗师那里学习体育锻炼(即手腕运动)。当病人把这个装置戴在手腕上时,它也可以复制这些练习。在这里,一个加速度计传感器和一个基于磁力计传感器的智能腕带被用来识别手腕的运动,如屈伸外展和内收。这项初步工作的目的是准确地驱动附着在机器人上的所有电机执行器,并校准反馈传感器以反映智能手环的运动。未来,该机器人可以通过物联网平台作为远程操作康复设备使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Smart-Band Operated Wrist Rehabilitation Robot
Many people in the world are increasingly suffering from stroke issues. Survivors often tend to suffer from hemiplegia or related conditions, in which some portion of their body may be rendered useless. The wrist is one such part. But this injury can be recovered by conventional rehabilitation processes like physical therapy. In this paper, a device for robot-assisted physical therapy is presented for wrist rehabilitation. It can overcome the lack of availability of physical therapists and reduce the cost incurred in long-term therapy. Also, it can provide accurate regular exercises without missing any step even in the absence of the therapist. These two DOF robotic devices can learn the physical exercise (i.e. wrist-based movements) from the trained therapist through an electronic smart-band. It can also replicate these exercises when the patient wears this device over his/her wrist. Here, an accelerometer sensor and a magnetometer sensor-based smart-band are used for recognizing the wrist motions like flexion, extension, abduction, and adduction. The objective of this preliminary work is to drive accurately all the motor actuators which are attached to the robot and calibrate the feedback sensor to reflect the movement of the smart-band. In the future, this robot can be used as a teleoperated rehabilitation device through an IoT platform.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信