{"title":"智能腕带操作手腕康复机器人","authors":"Sunit Thakur, Subir Das, S. Bhaumik","doi":"10.1109/ASPCON49795.2020.9276666","DOIUrl":null,"url":null,"abstract":"Many people in the world are increasingly suffering from stroke issues. Survivors often tend to suffer from hemiplegia or related conditions, in which some portion of their body may be rendered useless. The wrist is one such part. But this injury can be recovered by conventional rehabilitation processes like physical therapy. In this paper, a device for robot-assisted physical therapy is presented for wrist rehabilitation. It can overcome the lack of availability of physical therapists and reduce the cost incurred in long-term therapy. Also, it can provide accurate regular exercises without missing any step even in the absence of the therapist. These two DOF robotic devices can learn the physical exercise (i.e. wrist-based movements) from the trained therapist through an electronic smart-band. It can also replicate these exercises when the patient wears this device over his/her wrist. Here, an accelerometer sensor and a magnetometer sensor-based smart-band are used for recognizing the wrist motions like flexion, extension, abduction, and adduction. The objective of this preliminary work is to drive accurately all the motor actuators which are attached to the robot and calibrate the feedback sensor to reflect the movement of the smart-band. In the future, this robot can be used as a teleoperated rehabilitation device through an IoT platform.","PeriodicalId":193814,"journal":{"name":"2020 IEEE Applied Signal Processing Conference (ASPCON)","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Smart-Band Operated Wrist Rehabilitation Robot\",\"authors\":\"Sunit Thakur, Subir Das, S. Bhaumik\",\"doi\":\"10.1109/ASPCON49795.2020.9276666\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many people in the world are increasingly suffering from stroke issues. Survivors often tend to suffer from hemiplegia or related conditions, in which some portion of their body may be rendered useless. The wrist is one such part. But this injury can be recovered by conventional rehabilitation processes like physical therapy. In this paper, a device for robot-assisted physical therapy is presented for wrist rehabilitation. It can overcome the lack of availability of physical therapists and reduce the cost incurred in long-term therapy. Also, it can provide accurate regular exercises without missing any step even in the absence of the therapist. These two DOF robotic devices can learn the physical exercise (i.e. wrist-based movements) from the trained therapist through an electronic smart-band. It can also replicate these exercises when the patient wears this device over his/her wrist. Here, an accelerometer sensor and a magnetometer sensor-based smart-band are used for recognizing the wrist motions like flexion, extension, abduction, and adduction. The objective of this preliminary work is to drive accurately all the motor actuators which are attached to the robot and calibrate the feedback sensor to reflect the movement of the smart-band. In the future, this robot can be used as a teleoperated rehabilitation device through an IoT platform.\",\"PeriodicalId\":193814,\"journal\":{\"name\":\"2020 IEEE Applied Signal Processing Conference (ASPCON)\",\"volume\":\"91 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Applied Signal Processing Conference (ASPCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASPCON49795.2020.9276666\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Applied Signal Processing Conference (ASPCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASPCON49795.2020.9276666","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Many people in the world are increasingly suffering from stroke issues. Survivors often tend to suffer from hemiplegia or related conditions, in which some portion of their body may be rendered useless. The wrist is one such part. But this injury can be recovered by conventional rehabilitation processes like physical therapy. In this paper, a device for robot-assisted physical therapy is presented for wrist rehabilitation. It can overcome the lack of availability of physical therapists and reduce the cost incurred in long-term therapy. Also, it can provide accurate regular exercises without missing any step even in the absence of the therapist. These two DOF robotic devices can learn the physical exercise (i.e. wrist-based movements) from the trained therapist through an electronic smart-band. It can also replicate these exercises when the patient wears this device over his/her wrist. Here, an accelerometer sensor and a magnetometer sensor-based smart-band are used for recognizing the wrist motions like flexion, extension, abduction, and adduction. The objective of this preliminary work is to drive accurately all the motor actuators which are attached to the robot and calibrate the feedback sensor to reflect the movement of the smart-band. In the future, this robot can be used as a teleoperated rehabilitation device through an IoT platform.