{"title":"宽频带适用于中频、谐振WPT和RFID系统的高速通信","authors":"J. Besnoff, D. Ricketts","doi":"10.1109/EUMC.2015.7345721","DOIUrl":null,"url":null,"abstract":"In this paper we present an experimental wireless power transfer (WPT) prototype that has achieved a 118 kHz power transfer bandwidth operating at the maximum achievable efficiency. Using a simulation and analytical model we show that the power transfer bandwidth of an optimally tuned WPT system is determined by the loaded Q of the system and not by the Q of the resonant tanks. This observation lead to the realization of a WPT communication system that can transmit data at high data rates greater than 8% of the carrier frequency, a data rate significantly greater than has previously been proposed for resonant WPT and RFID systems.","PeriodicalId":350086,"journal":{"name":"2015 European Microwave Conference (EuMC)","volume":"59 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Wide bandwidth for high-speed communication in mid-range, resonant WPT and RFID systems\",\"authors\":\"J. Besnoff, D. Ricketts\",\"doi\":\"10.1109/EUMC.2015.7345721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present an experimental wireless power transfer (WPT) prototype that has achieved a 118 kHz power transfer bandwidth operating at the maximum achievable efficiency. Using a simulation and analytical model we show that the power transfer bandwidth of an optimally tuned WPT system is determined by the loaded Q of the system and not by the Q of the resonant tanks. This observation lead to the realization of a WPT communication system that can transmit data at high data rates greater than 8% of the carrier frequency, a data rate significantly greater than has previously been proposed for resonant WPT and RFID systems.\",\"PeriodicalId\":350086,\"journal\":{\"name\":\"2015 European Microwave Conference (EuMC)\",\"volume\":\"59 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 European Microwave Conference (EuMC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUMC.2015.7345721\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 European Microwave Conference (EuMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUMC.2015.7345721","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Wide bandwidth for high-speed communication in mid-range, resonant WPT and RFID systems
In this paper we present an experimental wireless power transfer (WPT) prototype that has achieved a 118 kHz power transfer bandwidth operating at the maximum achievable efficiency. Using a simulation and analytical model we show that the power transfer bandwidth of an optimally tuned WPT system is determined by the loaded Q of the system and not by the Q of the resonant tanks. This observation lead to the realization of a WPT communication system that can transmit data at high data rates greater than 8% of the carrier frequency, a data rate significantly greater than has previously been proposed for resonant WPT and RFID systems.