低复杂度M假设检测:M向量情况

M. Nafie, A. Tewfik
{"title":"低复杂度M假设检测:M向量情况","authors":"M. Nafie, A. Tewfik","doi":"10.1109/ACSSC.1998.750960","DOIUrl":null,"url":null,"abstract":"Low complexity algorithms are essential in many applications which require low power implementation. We present a low complexity technique for solving M-hypotheses detection problems, that involve vector observations. This technique works in these cases where the number of vectors is equal to or smaller than the dimensionality of the vectors. It attempts to optimally trade off complexity with probability of error through solving the problem in a lower dimension.","PeriodicalId":393743,"journal":{"name":"Conference Record of Thirty-Second Asilomar Conference on Signals, Systems and Computers (Cat. No.98CH36284)","volume":"121 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low complexity M-hypotheses detection: M vectors case\",\"authors\":\"M. Nafie, A. Tewfik\",\"doi\":\"10.1109/ACSSC.1998.750960\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Low complexity algorithms are essential in many applications which require low power implementation. We present a low complexity technique for solving M-hypotheses detection problems, that involve vector observations. This technique works in these cases where the number of vectors is equal to or smaller than the dimensionality of the vectors. It attempts to optimally trade off complexity with probability of error through solving the problem in a lower dimension.\",\"PeriodicalId\":393743,\"journal\":{\"name\":\"Conference Record of Thirty-Second Asilomar Conference on Signals, Systems and Computers (Cat. No.98CH36284)\",\"volume\":\"121 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference Record of Thirty-Second Asilomar Conference on Signals, Systems and Computers (Cat. No.98CH36284)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACSSC.1998.750960\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of Thirty-Second Asilomar Conference on Signals, Systems and Computers (Cat. No.98CH36284)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.1998.750960","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在许多需要低功耗实现的应用中,低复杂度算法是必不可少的。我们提出了一种低复杂度的技术来解决涉及向量观测的m -假设检测问题。这种技术适用于向量的数量等于或小于向量的维数的情况。它试图通过在较低的维度上解决问题来最佳地权衡复杂性和错误概率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low complexity M-hypotheses detection: M vectors case
Low complexity algorithms are essential in many applications which require low power implementation. We present a low complexity technique for solving M-hypotheses detection problems, that involve vector observations. This technique works in these cases where the number of vectors is equal to or smaller than the dimensionality of the vectors. It attempts to optimally trade off complexity with probability of error through solving the problem in a lower dimension.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信