准时希尔伯特格式与证明近似奇点

Angelos Mantzaflaris, B. Mourrain, Á. Szántó
{"title":"准时希尔伯特格式与证明近似奇点","authors":"Angelos Mantzaflaris, B. Mourrain, Á. Szántó","doi":"10.1145/3373207.3404024","DOIUrl":null,"url":null,"abstract":"In this paper we provide a new method to certify that a nearby polynomial system has a singular isolated root and we compute its multiplicity structure. More precisely, given a polynomial system f = (f1, ..., fN) ∈ C[x1, ..., xn]N, we present a Newton iteration on an extended deflated system that locally converges, under regularity conditions, to a small deformation of f such that this deformed system has an exact singular root. The iteration simultaneously converges to the coordinates of the singular root and the coefficients of the so-called inverse system that describes the multiplicity structure at the root. We use α-theory test to certify the quadratic convergence, and to give bounds on the size of the deformation and on the approximation error. The approach relies on an analysis of the punctual Hilbert scheme, for which we provide a new description. We show in particular that some of its strata can be rationally parametrized and exploit these parametrizations in the certification. We show in numerical experimentation how the approximate inverse system can be computed as a starting point of the Newton iterations and the fast numerical convergence to the singular root with its multiplicity structure, certified by our criteria.","PeriodicalId":186699,"journal":{"name":"Proceedings of the 45th International Symposium on Symbolic and Algebraic Computation","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Punctual Hilbert scheme and certified approximate singularities\",\"authors\":\"Angelos Mantzaflaris, B. Mourrain, Á. Szántó\",\"doi\":\"10.1145/3373207.3404024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we provide a new method to certify that a nearby polynomial system has a singular isolated root and we compute its multiplicity structure. More precisely, given a polynomial system f = (f1, ..., fN) ∈ C[x1, ..., xn]N, we present a Newton iteration on an extended deflated system that locally converges, under regularity conditions, to a small deformation of f such that this deformed system has an exact singular root. The iteration simultaneously converges to the coordinates of the singular root and the coefficients of the so-called inverse system that describes the multiplicity structure at the root. We use α-theory test to certify the quadratic convergence, and to give bounds on the size of the deformation and on the approximation error. The approach relies on an analysis of the punctual Hilbert scheme, for which we provide a new description. We show in particular that some of its strata can be rationally parametrized and exploit these parametrizations in the certification. We show in numerical experimentation how the approximate inverse system can be computed as a starting point of the Newton iterations and the fast numerical convergence to the singular root with its multiplicity structure, certified by our criteria.\",\"PeriodicalId\":186699,\"journal\":{\"name\":\"Proceedings of the 45th International Symposium on Symbolic and Algebraic Computation\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 45th International Symposium on Symbolic and Algebraic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3373207.3404024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 45th International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3373207.3404024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文给出了一种证明邻近多项式系统存在奇异孤立根的新方法,并计算了其多重结构。更准确地说,给定一个多项式系统f = (f1,…, fN)∈C[x1,…], xn]N,在正则条件下,我们给出了一个扩展压缩系统的牛顿迭代,该系统局部收敛于f的一个小变形,使得该变形系统具有一个精确奇异根。迭代同时收敛到奇异根的坐标和描述根处多重结构的所谓逆系统的系数。用α-理论检验证明了该方法的二次收敛性,并给出了变形大小和近似误差的界。该方法依赖于对准时希尔伯特方案的分析,为此我们提供了一种新的描述。我们特别指出,它的一些地层可以合理地参数化,并在证明中利用这些参数化。我们通过数值实验证明了近似逆系统可以作为牛顿迭代的起点,并通过我们的准则证明了它的多重结构快速收敛到奇异根。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Punctual Hilbert scheme and certified approximate singularities
In this paper we provide a new method to certify that a nearby polynomial system has a singular isolated root and we compute its multiplicity structure. More precisely, given a polynomial system f = (f1, ..., fN) ∈ C[x1, ..., xn]N, we present a Newton iteration on an extended deflated system that locally converges, under regularity conditions, to a small deformation of f such that this deformed system has an exact singular root. The iteration simultaneously converges to the coordinates of the singular root and the coefficients of the so-called inverse system that describes the multiplicity structure at the root. We use α-theory test to certify the quadratic convergence, and to give bounds on the size of the deformation and on the approximation error. The approach relies on an analysis of the punctual Hilbert scheme, for which we provide a new description. We show in particular that some of its strata can be rationally parametrized and exploit these parametrizations in the certification. We show in numerical experimentation how the approximate inverse system can be computed as a starting point of the Newton iterations and the fast numerical convergence to the singular root with its multiplicity structure, certified by our criteria.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信