基于人工神经网络的电力系统状态估计简化模型

Amamihe Onwuachumba, Yunhui Wu, M. Musavi
{"title":"基于人工神经网络的电力系统状态估计简化模型","authors":"Amamihe Onwuachumba, Yunhui Wu, M. Musavi","doi":"10.1109/GREENTECH.2013.69","DOIUrl":null,"url":null,"abstract":"In this paper a new technique using artificial neural networks for power system state estimation is presented. This method does not require network observability analysis and uses fewer measurement variables than conventional techniques. This approach has been successfully implemented on 6-bus and 18-bus power systems and the results are provided.","PeriodicalId":311325,"journal":{"name":"2013 IEEE Green Technologies Conference (GreenTech)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Reduced Model for Power System State Estimation Using Artificial Neural Networks\",\"authors\":\"Amamihe Onwuachumba, Yunhui Wu, M. Musavi\",\"doi\":\"10.1109/GREENTECH.2013.69\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper a new technique using artificial neural networks for power system state estimation is presented. This method does not require network observability analysis and uses fewer measurement variables than conventional techniques. This approach has been successfully implemented on 6-bus and 18-bus power systems and the results are provided.\",\"PeriodicalId\":311325,\"journal\":{\"name\":\"2013 IEEE Green Technologies Conference (GreenTech)\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Green Technologies Conference (GreenTech)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GREENTECH.2013.69\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Green Technologies Conference (GreenTech)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GREENTECH.2013.69","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

本文提出了一种利用人工神经网络进行电力系统状态估计的新方法。该方法不需要网络可观测性分析,并且比传统技术使用更少的测量变量。该方法已在6总线和18总线电源系统上成功实现,并给出了结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reduced Model for Power System State Estimation Using Artificial Neural Networks
In this paper a new technique using artificial neural networks for power system state estimation is presented. This method does not require network observability analysis and uses fewer measurement variables than conventional techniques. This approach has been successfully implemented on 6-bus and 18-bus power systems and the results are provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信