基于可扩展网络的FPGA加速自动目标识别应用

Ruth Sivilotti, Young H. Cho, Wen-King Su, D. Cohen, Brian Bray
{"title":"基于可扩展网络的FPGA加速自动目标识别应用","authors":"Ruth Sivilotti, Young H. Cho, Wen-King Su, D. Cohen, Brian Bray","doi":"10.1109/FPGA.1998.707917","DOIUrl":null,"url":null,"abstract":"Image processing, specifically automatic target recognition (ATR) in synthetic aperture radar (SAR) imagery, is an application area that can require tremendous processing throughput. In this application, data comes from high bandwidth sensors, where the processing is time-critical. There is limited space and power for processing the data in the sensor platforms or in battlefield groundstations. DoD's strong push for using commercial-off-the-shelf (COTS) technology, the very high non-recurring engineering (NRE) costs for low volume ASICs, and evolving algorithms limit the feasibility of using custom special purpose hardware. In addition, a scalable system is required as the different sensor platforms have different image pixel rates and different mission requirements have different target recognition throughput needs per pixel. In this paper, we describe an ATR algorithm implementation using FPGA accelerators. We first describe the ATR algorithm that was implemented, the implementation on a single FPGA, how the FPGA nodes are connected to make a scalable system, and compare the performance to current scalable microprocessor-based implementations.","PeriodicalId":309841,"journal":{"name":"Proceedings. IEEE Symposium on FPGAs for Custom Computing Machines (Cat. No.98TB100251)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Scalable network based FPGA accelerators for an automatic target recognition application\",\"authors\":\"Ruth Sivilotti, Young H. Cho, Wen-King Su, D. Cohen, Brian Bray\",\"doi\":\"10.1109/FPGA.1998.707917\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image processing, specifically automatic target recognition (ATR) in synthetic aperture radar (SAR) imagery, is an application area that can require tremendous processing throughput. In this application, data comes from high bandwidth sensors, where the processing is time-critical. There is limited space and power for processing the data in the sensor platforms or in battlefield groundstations. DoD's strong push for using commercial-off-the-shelf (COTS) technology, the very high non-recurring engineering (NRE) costs for low volume ASICs, and evolving algorithms limit the feasibility of using custom special purpose hardware. In addition, a scalable system is required as the different sensor platforms have different image pixel rates and different mission requirements have different target recognition throughput needs per pixel. In this paper, we describe an ATR algorithm implementation using FPGA accelerators. We first describe the ATR algorithm that was implemented, the implementation on a single FPGA, how the FPGA nodes are connected to make a scalable system, and compare the performance to current scalable microprocessor-based implementations.\",\"PeriodicalId\":309841,\"journal\":{\"name\":\"Proceedings. IEEE Symposium on FPGAs for Custom Computing Machines (Cat. No.98TB100251)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. IEEE Symposium on FPGAs for Custom Computing Machines (Cat. No.98TB100251)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FPGA.1998.707917\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE Symposium on FPGAs for Custom Computing Machines (Cat. No.98TB100251)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPGA.1998.707917","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

图像处理,特别是合成孔径雷达(SAR)图像中的自动目标识别(ATR),是一个需要巨大处理吞吐量的应用领域。在此应用程序中,数据来自高带宽传感器,其处理对时间至关重要。在传感器平台或战场地面站处理数据的空间和功率有限。国防部大力推动使用商用现货(COTS)技术,小批量asic的非重复工程(NRE)成本非常高,以及不断发展的算法限制了使用定制专用硬件的可行性。此外,由于不同的传感器平台具有不同的图像像素率,不同的任务要求具有不同的每像素目标识别吞吐量需求,因此需要可扩展的系统。在本文中,我们描述了一个使用FPGA加速器的ATR算法实现。我们首先描述了实现的ATR算法,在单个FPGA上的实现,FPGA节点如何连接以形成可扩展的系统,并将性能与当前基于可扩展微处理器的实现进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scalable network based FPGA accelerators for an automatic target recognition application
Image processing, specifically automatic target recognition (ATR) in synthetic aperture radar (SAR) imagery, is an application area that can require tremendous processing throughput. In this application, data comes from high bandwidth sensors, where the processing is time-critical. There is limited space and power for processing the data in the sensor platforms or in battlefield groundstations. DoD's strong push for using commercial-off-the-shelf (COTS) technology, the very high non-recurring engineering (NRE) costs for low volume ASICs, and evolving algorithms limit the feasibility of using custom special purpose hardware. In addition, a scalable system is required as the different sensor platforms have different image pixel rates and different mission requirements have different target recognition throughput needs per pixel. In this paper, we describe an ATR algorithm implementation using FPGA accelerators. We first describe the ATR algorithm that was implemented, the implementation on a single FPGA, how the FPGA nodes are connected to make a scalable system, and compare the performance to current scalable microprocessor-based implementations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信