M. Gentile, M. Gerlach, R. Richter, M. V. van Setten, J. Petersen, P. van der Heide, F. Holzmeier
{"title":"EUV光刻光刻胶模型的解离光电离","authors":"M. Gentile, M. Gerlach, R. Richter, M. V. van Setten, J. Petersen, P. van der Heide, F. Holzmeier","doi":"10.1117/12.2657702","DOIUrl":null,"url":null,"abstract":"The dissociative photoionization of tert-butyl methyl methacrylate, a monomer unit found in many ESCAP resists, was investigated in a gas phase photoelectron photoion coincidence experiment employing extreme ultraviolet (EUV) synchrotron radiation at 13.5 nm. It was found that the interaction of EUV photons with the molecules leads almost exclusively to dissociation. However, the ionization can also directly deprotect the ester function, thus inducing the solubility switch wanted in a resist film. These results serve as a building block to reconstruct the full picture of the mechanism in widely used chemically amplified resist thin films, provide a knob to tailor more performant resist materials, and will aid interpreting advanced ultrafast time-resolved experiments.","PeriodicalId":212235,"journal":{"name":"Advanced Lithography","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Dissociative photoionization of EUV lithography photoresist models\",\"authors\":\"M. Gentile, M. Gerlach, R. Richter, M. V. van Setten, J. Petersen, P. van der Heide, F. Holzmeier\",\"doi\":\"10.1117/12.2657702\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The dissociative photoionization of tert-butyl methyl methacrylate, a monomer unit found in many ESCAP resists, was investigated in a gas phase photoelectron photoion coincidence experiment employing extreme ultraviolet (EUV) synchrotron radiation at 13.5 nm. It was found that the interaction of EUV photons with the molecules leads almost exclusively to dissociation. However, the ionization can also directly deprotect the ester function, thus inducing the solubility switch wanted in a resist film. These results serve as a building block to reconstruct the full picture of the mechanism in widely used chemically amplified resist thin films, provide a knob to tailor more performant resist materials, and will aid interpreting advanced ultrafast time-resolved experiments.\",\"PeriodicalId\":212235,\"journal\":{\"name\":\"Advanced Lithography\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Lithography\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2657702\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Lithography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2657702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dissociative photoionization of EUV lithography photoresist models
The dissociative photoionization of tert-butyl methyl methacrylate, a monomer unit found in many ESCAP resists, was investigated in a gas phase photoelectron photoion coincidence experiment employing extreme ultraviolet (EUV) synchrotron radiation at 13.5 nm. It was found that the interaction of EUV photons with the molecules leads almost exclusively to dissociation. However, the ionization can also directly deprotect the ester function, thus inducing the solubility switch wanted in a resist film. These results serve as a building block to reconstruct the full picture of the mechanism in widely used chemically amplified resist thin films, provide a knob to tailor more performant resist materials, and will aid interpreting advanced ultrafast time-resolved experiments.