一种新的人群密度估计方法

Wei Li, Xiaojuan Wu, Koichi Matsumoto, Hua-An Zhao
{"title":"一种新的人群密度估计方法","authors":"Wei Li, Xiaojuan Wu, Koichi Matsumoto, Hua-An Zhao","doi":"10.1109/TENCON.2010.5685978","DOIUrl":null,"url":null,"abstract":"Crowd density estimation is important in crowd analysis, this paper proposes a new approach used for crowd density estimation. First, background is removed by using a combination of optical flow and background subtract methods. Then according to texture analysis, a set of new feature is extracted from foreground image. Finally, a self-organizing map neural network is used for classifying different crowds. Some experimental results show compared to former crowd estimation methods, the proposed approach can carry out the estimation more accurately, the rate of true classification is 85.6% on a data set of 500 images.","PeriodicalId":101683,"journal":{"name":"TENCON 2010 - 2010 IEEE Region 10 Conference","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A new approach of crowd density estimation\",\"authors\":\"Wei Li, Xiaojuan Wu, Koichi Matsumoto, Hua-An Zhao\",\"doi\":\"10.1109/TENCON.2010.5685978\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Crowd density estimation is important in crowd analysis, this paper proposes a new approach used for crowd density estimation. First, background is removed by using a combination of optical flow and background subtract methods. Then according to texture analysis, a set of new feature is extracted from foreground image. Finally, a self-organizing map neural network is used for classifying different crowds. Some experimental results show compared to former crowd estimation methods, the proposed approach can carry out the estimation more accurately, the rate of true classification is 85.6% on a data set of 500 images.\",\"PeriodicalId\":101683,\"journal\":{\"name\":\"TENCON 2010 - 2010 IEEE Region 10 Conference\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"TENCON 2010 - 2010 IEEE Region 10 Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TENCON.2010.5685978\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"TENCON 2010 - 2010 IEEE Region 10 Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON.2010.5685978","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

人群密度估计在人群分析中占有重要地位,本文提出了一种新的人群密度估计方法。首先,采用光流和背景相减相结合的方法去除背景。然后根据纹理分析,从前景图像中提取一组新的特征。最后,利用自组织映射神经网络对不同的人群进行分类。实验结果表明,与以往的人群估计方法相比,该方法可以更准确地进行估计,在500张图像的数据集上,真实分类率达到85.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new approach of crowd density estimation
Crowd density estimation is important in crowd analysis, this paper proposes a new approach used for crowd density estimation. First, background is removed by using a combination of optical flow and background subtract methods. Then according to texture analysis, a set of new feature is extracted from foreground image. Finally, a self-organizing map neural network is used for classifying different crowds. Some experimental results show compared to former crowd estimation methods, the proposed approach can carry out the estimation more accurately, the rate of true classification is 85.6% on a data set of 500 images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信