A. Emeretlis, Vasilios I. Kelefouras, G. Theodoridis, G. Glentis
{"title":"光学系统volterra DFES的高效FPGA实现","authors":"A. Emeretlis, Vasilios I. Kelefouras, G. Theodoridis, G. Glentis","doi":"10.1109/DCAS.2014.6965328","DOIUrl":null,"url":null,"abstract":"In this work suitable architectures and high-throughput FPGA implementations of Volterra Decision Feedback Equalizers (VDFEs) for optical communication links are presented. Two VDFE configurations were selected based on the available resources of the employed FPGA devices, and two multiplexer-based architectures were developed for each of them in order to achieve the target throughput. The comparison of the experimental results with respect to different VDFE configurations, throughput, and FPGA devices points out the platform-specific design characteristics. The introduced architectures meet the desired 10Gb/s throughput, so it is demonstrated that the FPGA is a suitable platform for high-speed optical fiber communication systems.","PeriodicalId":138665,"journal":{"name":"2014 IEEE Dallas Circuits and Systems Conference (DCAS)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Efficient FPGA implementations of volterra DFES for optical systems\",\"authors\":\"A. Emeretlis, Vasilios I. Kelefouras, G. Theodoridis, G. Glentis\",\"doi\":\"10.1109/DCAS.2014.6965328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work suitable architectures and high-throughput FPGA implementations of Volterra Decision Feedback Equalizers (VDFEs) for optical communication links are presented. Two VDFE configurations were selected based on the available resources of the employed FPGA devices, and two multiplexer-based architectures were developed for each of them in order to achieve the target throughput. The comparison of the experimental results with respect to different VDFE configurations, throughput, and FPGA devices points out the platform-specific design characteristics. The introduced architectures meet the desired 10Gb/s throughput, so it is demonstrated that the FPGA is a suitable platform for high-speed optical fiber communication systems.\",\"PeriodicalId\":138665,\"journal\":{\"name\":\"2014 IEEE Dallas Circuits and Systems Conference (DCAS)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Dallas Circuits and Systems Conference (DCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCAS.2014.6965328\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Dallas Circuits and Systems Conference (DCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCAS.2014.6965328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Efficient FPGA implementations of volterra DFES for optical systems
In this work suitable architectures and high-throughput FPGA implementations of Volterra Decision Feedback Equalizers (VDFEs) for optical communication links are presented. Two VDFE configurations were selected based on the available resources of the employed FPGA devices, and two multiplexer-based architectures were developed for each of them in order to achieve the target throughput. The comparison of the experimental results with respect to different VDFE configurations, throughput, and FPGA devices points out the platform-specific design characteristics. The introduced architectures meet the desired 10Gb/s throughput, so it is demonstrated that the FPGA is a suitable platform for high-speed optical fiber communication systems.