V. Bogatyrjov, I. I. Cheremisin, E. Dianov, K. Golant, A. L. Tomashuk
{"title":"超高强度金属包覆低羟基低氯全硅光纤","authors":"V. Bogatyrjov, I. I. Cheremisin, E. Dianov, K. Golant, A. L. Tomashuk","doi":"10.1109/RADECS.1995.509828","DOIUrl":null,"url":null,"abstract":"High-purity KS-4V synthetic silica developed in the Silicate Chemistry Institute of the Russian Academy of Sciences is tested as the core material for radiation hardened optical fibers. Pure-silica-core fluorine-doped-silica-cladding optical fibers with polymer (acrylate) or metal (aluminum) coating are produced as the experimental samples. The light-reflecting fluorine-doped silica cladding is synthesized by the plasma outside deposition process. The aluminum coating technology used provides a very high strength of the fibers, unattainable for polymer coatings, and expands the fiber operating range up to 400/spl deg/C. It is established that the metal coating application can result in the annealing of the drawing-induced color centers with an absorption peak at 630 nm. Post-/spl gamma/-irradiation loss spectra in KS-4V-based fibers measured in 1-2 hours after 2 MGy irradiation at a dose rate of 8.3 Gy/s in the spectral range 350-700 nm are discussed. The 630 nm absorption peak is practically absent from the post-irradiation loss spectra of aluminum-coated KS-4V-based fibers.","PeriodicalId":310087,"journal":{"name":"Proceedings of the Third European Conference on Radiation and its Effects on Components and Systems","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Super-high-strength metal-coated low-hydroxyl low-chlorine all-silica optical fibers\",\"authors\":\"V. Bogatyrjov, I. I. Cheremisin, E. Dianov, K. Golant, A. L. Tomashuk\",\"doi\":\"10.1109/RADECS.1995.509828\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-purity KS-4V synthetic silica developed in the Silicate Chemistry Institute of the Russian Academy of Sciences is tested as the core material for radiation hardened optical fibers. Pure-silica-core fluorine-doped-silica-cladding optical fibers with polymer (acrylate) or metal (aluminum) coating are produced as the experimental samples. The light-reflecting fluorine-doped silica cladding is synthesized by the plasma outside deposition process. The aluminum coating technology used provides a very high strength of the fibers, unattainable for polymer coatings, and expands the fiber operating range up to 400/spl deg/C. It is established that the metal coating application can result in the annealing of the drawing-induced color centers with an absorption peak at 630 nm. Post-/spl gamma/-irradiation loss spectra in KS-4V-based fibers measured in 1-2 hours after 2 MGy irradiation at a dose rate of 8.3 Gy/s in the spectral range 350-700 nm are discussed. The 630 nm absorption peak is practically absent from the post-irradiation loss spectra of aluminum-coated KS-4V-based fibers.\",\"PeriodicalId\":310087,\"journal\":{\"name\":\"Proceedings of the Third European Conference on Radiation and its Effects on Components and Systems\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Third European Conference on Radiation and its Effects on Components and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RADECS.1995.509828\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Third European Conference on Radiation and its Effects on Components and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADECS.1995.509828","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High-purity KS-4V synthetic silica developed in the Silicate Chemistry Institute of the Russian Academy of Sciences is tested as the core material for radiation hardened optical fibers. Pure-silica-core fluorine-doped-silica-cladding optical fibers with polymer (acrylate) or metal (aluminum) coating are produced as the experimental samples. The light-reflecting fluorine-doped silica cladding is synthesized by the plasma outside deposition process. The aluminum coating technology used provides a very high strength of the fibers, unattainable for polymer coatings, and expands the fiber operating range up to 400/spl deg/C. It is established that the metal coating application can result in the annealing of the drawing-induced color centers with an absorption peak at 630 nm. Post-/spl gamma/-irradiation loss spectra in KS-4V-based fibers measured in 1-2 hours after 2 MGy irradiation at a dose rate of 8.3 Gy/s in the spectral range 350-700 nm are discussed. The 630 nm absorption peak is practically absent from the post-irradiation loss spectra of aluminum-coated KS-4V-based fibers.