{"title":"面向微处理器设计精确功率建模的跨层框架","authors":"Monir Zaman, M. Shihab, A. Coskun, Y. Makris","doi":"10.1109/PATMOS.2018.8464153","DOIUrl":null,"url":null,"abstract":"While state-of-the-art system-level simulators can deliver swift estimation of power dissipation for microprocessor designs, they do so at the expense of reduced accuracy. On the other hand, RTL simulators are typically cycle-accurate but overwhelmingly time consuming for real-life workloads. Consequently, the design community often has to make a compromise between accuracy and speed. In this work, we propose a novel cross-layer approach that can enable accurate power estimation by carefully integrating components from system-level and RTL simulation of the target design. We first leverage the concept of simulation points to transform the workload application and isolate its most critical segments. We then profile the highest weighted simulation point (HWSP) with a RTL simulator (AnyCore) for maximum accuracy, while the rest are simulated with a system-level simulator (gem5) for ensuring fast evaluation. Finally, we combine the integrated set of profiling data as input to the power simulator (McPAT). Our evaluation results for three different SPEC2006 benchmark applications demonstrate that our proposed cross-layer framework can improve the power estimation accuracy by up to 15% for individual simulation points and by ~9% for the full application, compared to that of a conventional system-level simulation scheme.","PeriodicalId":234100,"journal":{"name":"2018 28th International Symposium on Power and Timing Modeling, Optimization and Simulation (PATMOS)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Towards a Cross-Layer Framework for Accurate Power Modeling of Microprocessor Designs\",\"authors\":\"Monir Zaman, M. Shihab, A. Coskun, Y. Makris\",\"doi\":\"10.1109/PATMOS.2018.8464153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While state-of-the-art system-level simulators can deliver swift estimation of power dissipation for microprocessor designs, they do so at the expense of reduced accuracy. On the other hand, RTL simulators are typically cycle-accurate but overwhelmingly time consuming for real-life workloads. Consequently, the design community often has to make a compromise between accuracy and speed. In this work, we propose a novel cross-layer approach that can enable accurate power estimation by carefully integrating components from system-level and RTL simulation of the target design. We first leverage the concept of simulation points to transform the workload application and isolate its most critical segments. We then profile the highest weighted simulation point (HWSP) with a RTL simulator (AnyCore) for maximum accuracy, while the rest are simulated with a system-level simulator (gem5) for ensuring fast evaluation. Finally, we combine the integrated set of profiling data as input to the power simulator (McPAT). Our evaluation results for three different SPEC2006 benchmark applications demonstrate that our proposed cross-layer framework can improve the power estimation accuracy by up to 15% for individual simulation points and by ~9% for the full application, compared to that of a conventional system-level simulation scheme.\",\"PeriodicalId\":234100,\"journal\":{\"name\":\"2018 28th International Symposium on Power and Timing Modeling, Optimization and Simulation (PATMOS)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 28th International Symposium on Power and Timing Modeling, Optimization and Simulation (PATMOS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PATMOS.2018.8464153\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 28th International Symposium on Power and Timing Modeling, Optimization and Simulation (PATMOS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PATMOS.2018.8464153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Towards a Cross-Layer Framework for Accurate Power Modeling of Microprocessor Designs
While state-of-the-art system-level simulators can deliver swift estimation of power dissipation for microprocessor designs, they do so at the expense of reduced accuracy. On the other hand, RTL simulators are typically cycle-accurate but overwhelmingly time consuming for real-life workloads. Consequently, the design community often has to make a compromise between accuracy and speed. In this work, we propose a novel cross-layer approach that can enable accurate power estimation by carefully integrating components from system-level and RTL simulation of the target design. We first leverage the concept of simulation points to transform the workload application and isolate its most critical segments. We then profile the highest weighted simulation point (HWSP) with a RTL simulator (AnyCore) for maximum accuracy, while the rest are simulated with a system-level simulator (gem5) for ensuring fast evaluation. Finally, we combine the integrated set of profiling data as input to the power simulator (McPAT). Our evaluation results for three different SPEC2006 benchmark applications demonstrate that our proposed cross-layer framework can improve the power estimation accuracy by up to 15% for individual simulation points and by ~9% for the full application, compared to that of a conventional system-level simulation scheme.