使用CNN进行心电拍分类

H. A. Deepak, T. Vijaykumar
{"title":"使用CNN进行心电拍分类","authors":"H. A. Deepak, T. Vijaykumar","doi":"10.1109/ICDSIS55133.2022.9916004","DOIUrl":null,"url":null,"abstract":"This paper proposes an approach to classify cardiac arrhythmias according to the morphology of the electrocardiogram signal (ECG), using deep machine learning methods. Two hierarchical levels for classification are proposed, the first level classifies normal and abnormal beats, and the second level deals with the problem of multi-classification between classes of abnormal beats. The classifier is a U-Net convolutional neural network (CNN) architecture applied for feature extraction and classification of ECG arrhythmias acquired from MIT-BIH database. Results are discussed with sensitivity, accuracy and specificity as parameters of evaluation.","PeriodicalId":178360,"journal":{"name":"2022 IEEE International Conference on Data Science and Information System (ICDSIS)","volume":"225 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"ECG Beat Classification using CNN\",\"authors\":\"H. A. Deepak, T. Vijaykumar\",\"doi\":\"10.1109/ICDSIS55133.2022.9916004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an approach to classify cardiac arrhythmias according to the morphology of the electrocardiogram signal (ECG), using deep machine learning methods. Two hierarchical levels for classification are proposed, the first level classifies normal and abnormal beats, and the second level deals with the problem of multi-classification between classes of abnormal beats. The classifier is a U-Net convolutional neural network (CNN) architecture applied for feature extraction and classification of ECG arrhythmias acquired from MIT-BIH database. Results are discussed with sensitivity, accuracy and specificity as parameters of evaluation.\",\"PeriodicalId\":178360,\"journal\":{\"name\":\"2022 IEEE International Conference on Data Science and Information System (ICDSIS)\",\"volume\":\"225 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Data Science and Information System (ICDSIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDSIS55133.2022.9916004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Data Science and Information System (ICDSIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSIS55133.2022.9916004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种利用深度机器学习方法,根据心电图信号的形态对心律失常进行分类的方法。提出了两个层次的分类方法,第一级对正常和异常拍进行分类,第二级处理异常拍类之间的多重分类问题。该分类器是一种U-Net卷积神经网络(CNN)架构,应用于从MIT-BIH数据库获取的心电心律失常的特征提取和分类。结果以敏感性、准确性和特异性作为评价参数进行讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ECG Beat Classification using CNN
This paper proposes an approach to classify cardiac arrhythmias according to the morphology of the electrocardiogram signal (ECG), using deep machine learning methods. Two hierarchical levels for classification are proposed, the first level classifies normal and abnormal beats, and the second level deals with the problem of multi-classification between classes of abnormal beats. The classifier is a U-Net convolutional neural network (CNN) architecture applied for feature extraction and classification of ECG arrhythmias acquired from MIT-BIH database. Results are discussed with sensitivity, accuracy and specificity as parameters of evaluation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信