{"title":"多通道神经刺激器大负载范围内高PCE、快速瞬态响应的无线电源设计","authors":"Weisong Liang, Xu Liu, Weijian Chen, Ze-Xi Lu, Peiyuan Wan, Zhijie Chen","doi":"10.1109/APCCAS55924.2022.10090269","DOIUrl":null,"url":null,"abstract":"Brain-machine interface(BMI) with implantable bioelectronics systems can provide an alternative way to cure neural diseases, while a wireless power transfer (WPT) system plays an important role in providing a stable voltage supply for the implanted chip. A WPT for multichannel neural stimulators with high power conversion efficiency(PCE) and low power dissipation over a large loading range is proposed in this work. Both the internal Vth cancelation (IVC) and the dynamic bulk modulation (DBM) schemes are used to maximize the PCE of rectifiers. Besides, a reverse nested miller compensation (RNMC) LDO with a transient enhancer is proposed for the WPT system. Simulation results show that the total PCE is 55% at its peak, and the power consumption is 0.55 mW and 22.5 mW at standby (SB) and full stimulation (ST) load, respectively. For a full load transition, the overshoot and downshoot of the LDO are 110mV and 71 mV, respectively, which help improve the load transient response during neural stimulation.","PeriodicalId":243739,"journal":{"name":"2022 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Wireless Power Design with High PCE and Fast Transient Response over a Large Loading Range for Multi-channel Neural Stimulators\",\"authors\":\"Weisong Liang, Xu Liu, Weijian Chen, Ze-Xi Lu, Peiyuan Wan, Zhijie Chen\",\"doi\":\"10.1109/APCCAS55924.2022.10090269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Brain-machine interface(BMI) with implantable bioelectronics systems can provide an alternative way to cure neural diseases, while a wireless power transfer (WPT) system plays an important role in providing a stable voltage supply for the implanted chip. A WPT for multichannel neural stimulators with high power conversion efficiency(PCE) and low power dissipation over a large loading range is proposed in this work. Both the internal Vth cancelation (IVC) and the dynamic bulk modulation (DBM) schemes are used to maximize the PCE of rectifiers. Besides, a reverse nested miller compensation (RNMC) LDO with a transient enhancer is proposed for the WPT system. Simulation results show that the total PCE is 55% at its peak, and the power consumption is 0.55 mW and 22.5 mW at standby (SB) and full stimulation (ST) load, respectively. For a full load transition, the overshoot and downshoot of the LDO are 110mV and 71 mV, respectively, which help improve the load transient response during neural stimulation.\",\"PeriodicalId\":243739,\"journal\":{\"name\":\"2022 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APCCAS55924.2022.10090269\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APCCAS55924.2022.10090269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Wireless Power Design with High PCE and Fast Transient Response over a Large Loading Range for Multi-channel Neural Stimulators
Brain-machine interface(BMI) with implantable bioelectronics systems can provide an alternative way to cure neural diseases, while a wireless power transfer (WPT) system plays an important role in providing a stable voltage supply for the implanted chip. A WPT for multichannel neural stimulators with high power conversion efficiency(PCE) and low power dissipation over a large loading range is proposed in this work. Both the internal Vth cancelation (IVC) and the dynamic bulk modulation (DBM) schemes are used to maximize the PCE of rectifiers. Besides, a reverse nested miller compensation (RNMC) LDO with a transient enhancer is proposed for the WPT system. Simulation results show that the total PCE is 55% at its peak, and the power consumption is 0.55 mW and 22.5 mW at standby (SB) and full stimulation (ST) load, respectively. For a full load transition, the overshoot and downshoot of the LDO are 110mV and 71 mV, respectively, which help improve the load transient response during neural stimulation.