L. Gan, H. Fu, W. Luk, Chao Yang, Wei Xue, Xiaomeng Huang, Youhui Zhang, Guangwen Yang
{"title":"利用混合精度数据流引擎加速求解全球大气方程","authors":"L. Gan, H. Fu, W. Luk, Chao Yang, Wei Xue, Xiaomeng Huang, Youhui Zhang, Guangwen Yang","doi":"10.1109/FPL.2013.6645508","DOIUrl":null,"url":null,"abstract":"One of the most essential and challenging components in a climate system model is the atmospheric model. To solve the multi-physical atmospheric equations, developers have to face extremely complex stencil kernels. In this paper, we propose a hybrid CPU-FPGA algorithm that applies single and multiple FPGAs to compute the upwind stencil for the global shallow water equations. Through mixed-precision arithmetic, we manage to build a fully pipelined upwind stencil design on a single FPGA, which can perform 428 floating-point and 235 fixed-point operations per cycle. The CPU-FPGA algorithm using one Virtex-6 FPGA provides 100 times speedup over a 6-core CPU and 4 times speedup over a hybrid node with 12 CPU cores and a Fermi GPU card. The algorithm using four FPGAs provides 330 times speedup over a 6-core CPU; it is also 14 times faster and 9 times more power efficient than the hybrid CPU-GPU node.","PeriodicalId":200435,"journal":{"name":"2013 23rd International Conference on Field programmable Logic and Applications","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"Accelerating solvers for global atmospheric equations through mixed-precision data flow engine\",\"authors\":\"L. Gan, H. Fu, W. Luk, Chao Yang, Wei Xue, Xiaomeng Huang, Youhui Zhang, Guangwen Yang\",\"doi\":\"10.1109/FPL.2013.6645508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the most essential and challenging components in a climate system model is the atmospheric model. To solve the multi-physical atmospheric equations, developers have to face extremely complex stencil kernels. In this paper, we propose a hybrid CPU-FPGA algorithm that applies single and multiple FPGAs to compute the upwind stencil for the global shallow water equations. Through mixed-precision arithmetic, we manage to build a fully pipelined upwind stencil design on a single FPGA, which can perform 428 floating-point and 235 fixed-point operations per cycle. The CPU-FPGA algorithm using one Virtex-6 FPGA provides 100 times speedup over a 6-core CPU and 4 times speedup over a hybrid node with 12 CPU cores and a Fermi GPU card. The algorithm using four FPGAs provides 330 times speedup over a 6-core CPU; it is also 14 times faster and 9 times more power efficient than the hybrid CPU-GPU node.\",\"PeriodicalId\":200435,\"journal\":{\"name\":\"2013 23rd International Conference on Field programmable Logic and Applications\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 23rd International Conference on Field programmable Logic and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FPL.2013.6645508\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 23rd International Conference on Field programmable Logic and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPL.2013.6645508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Accelerating solvers for global atmospheric equations through mixed-precision data flow engine
One of the most essential and challenging components in a climate system model is the atmospheric model. To solve the multi-physical atmospheric equations, developers have to face extremely complex stencil kernels. In this paper, we propose a hybrid CPU-FPGA algorithm that applies single and multiple FPGAs to compute the upwind stencil for the global shallow water equations. Through mixed-precision arithmetic, we manage to build a fully pipelined upwind stencil design on a single FPGA, which can perform 428 floating-point and 235 fixed-point operations per cycle. The CPU-FPGA algorithm using one Virtex-6 FPGA provides 100 times speedup over a 6-core CPU and 4 times speedup over a hybrid node with 12 CPU cores and a Fermi GPU card. The algorithm using four FPGAs provides 330 times speedup over a 6-core CPU; it is also 14 times faster and 9 times more power efficient than the hybrid CPU-GPU node.