质子交换膜燃料电池喷射器三维混合网格生成方法

Denghao Zhang, Xuebin Yang, Zhongxuan Du
{"title":"质子交换膜燃料电池喷射器三维混合网格生成方法","authors":"Denghao Zhang, Xuebin Yang, Zhongxuan Du","doi":"10.1109/CSDE53843.2021.9718382","DOIUrl":null,"url":null,"abstract":"As a key component of the proton exchange membrane fuel cell (PEMFC) anode hydrogen circulation system, the flow performance in the ejector largely determines the efficiency of the anode hydrogen circulation system. Therefore, it is important to predict the flow characteristics in the ejector and to supply design analysis by using a numerical simulation. This study presents a three-dimensional hybrid mesh generation method for numerical simulation using ICEM CFD software. Firstly, the ejector geometry model is processed by creating an auxiliary surface, which serves as a hybrid interface. The mesh generation method is highlighted on this hybrid interface. The computational domains are then divided into both structured and unstructured meshes. The causes of low-quality mesh might be the wrong arrangement of nodes or unreasonable maximum size of mesh, and thus a quality improvement method for mesh-smoothing is proposed according to different types of meshes. Finally, the generation method of the hybrid mesh is evaluated by ICEM CFD software quality metrics and the simulation result of Fluent software. The numerical simulation results show good agreement with the experimental data with a maximum error of only 4.62%. The proposed method can reduce the difficulty of mesh generation and ensure a certain mesh quality. The method is also applicable to mesh generation for other complex geometric models.","PeriodicalId":166950,"journal":{"name":"2021 IEEE Asia-Pacific Conference on Computer Science and Data Engineering (CSDE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Three-dimensional hybrid mesh generation method for the ejector used in proton exchange membrane fuel cells\",\"authors\":\"Denghao Zhang, Xuebin Yang, Zhongxuan Du\",\"doi\":\"10.1109/CSDE53843.2021.9718382\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a key component of the proton exchange membrane fuel cell (PEMFC) anode hydrogen circulation system, the flow performance in the ejector largely determines the efficiency of the anode hydrogen circulation system. Therefore, it is important to predict the flow characteristics in the ejector and to supply design analysis by using a numerical simulation. This study presents a three-dimensional hybrid mesh generation method for numerical simulation using ICEM CFD software. Firstly, the ejector geometry model is processed by creating an auxiliary surface, which serves as a hybrid interface. The mesh generation method is highlighted on this hybrid interface. The computational domains are then divided into both structured and unstructured meshes. The causes of low-quality mesh might be the wrong arrangement of nodes or unreasonable maximum size of mesh, and thus a quality improvement method for mesh-smoothing is proposed according to different types of meshes. Finally, the generation method of the hybrid mesh is evaluated by ICEM CFD software quality metrics and the simulation result of Fluent software. The numerical simulation results show good agreement with the experimental data with a maximum error of only 4.62%. The proposed method can reduce the difficulty of mesh generation and ensure a certain mesh quality. The method is also applicable to mesh generation for other complex geometric models.\",\"PeriodicalId\":166950,\"journal\":{\"name\":\"2021 IEEE Asia-Pacific Conference on Computer Science and Data Engineering (CSDE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Asia-Pacific Conference on Computer Science and Data Engineering (CSDE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSDE53843.2021.9718382\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Asia-Pacific Conference on Computer Science and Data Engineering (CSDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSDE53843.2021.9718382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

喷射器作为质子交换膜燃料电池(PEMFC)阳极氢循环系统的关键部件,其内部的流动性能在很大程度上决定了阳极氢循环系统的效率。因此,通过数值模拟来预测喷射器内的流动特性并提供设计分析是非常重要的。提出了一种基于ICEM CFD软件的三维混合网格生成方法。首先,对喷射器几何模型进行处理,建立辅助曲面作为混合界面;网格生成方法在该混合界面上得到突出显示。然后将计算域分为结构化网格和非结构化网格。网格质量低的原因可能是节点排列错误或网格最大尺寸不合理,因此根据不同类型的网格提出了一种网格平滑质量改进方法。最后,利用ICEM CFD软件质量指标和Fluent软件仿真结果对混合网格的生成方法进行了评价。数值模拟结果与实验数据吻合较好,最大误差仅为4.62%。该方法可以降低网格生成的难度,保证一定的网格质量。该方法同样适用于其他复杂几何模型的网格生成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Three-dimensional hybrid mesh generation method for the ejector used in proton exchange membrane fuel cells
As a key component of the proton exchange membrane fuel cell (PEMFC) anode hydrogen circulation system, the flow performance in the ejector largely determines the efficiency of the anode hydrogen circulation system. Therefore, it is important to predict the flow characteristics in the ejector and to supply design analysis by using a numerical simulation. This study presents a three-dimensional hybrid mesh generation method for numerical simulation using ICEM CFD software. Firstly, the ejector geometry model is processed by creating an auxiliary surface, which serves as a hybrid interface. The mesh generation method is highlighted on this hybrid interface. The computational domains are then divided into both structured and unstructured meshes. The causes of low-quality mesh might be the wrong arrangement of nodes or unreasonable maximum size of mesh, and thus a quality improvement method for mesh-smoothing is proposed according to different types of meshes. Finally, the generation method of the hybrid mesh is evaluated by ICEM CFD software quality metrics and the simulation result of Fluent software. The numerical simulation results show good agreement with the experimental data with a maximum error of only 4.62%. The proposed method can reduce the difficulty of mesh generation and ensure a certain mesh quality. The method is also applicable to mesh generation for other complex geometric models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信