{"title":"尼日利亚某三级医院粪便中分离肠球菌的抗微生物药物耐药性模式","authors":"S. Shettima, K. Iregbu","doi":"10.4103/atp.atp_1_19","DOIUrl":null,"url":null,"abstract":"Background: Enterococci cause infections both in and out of the hospital setting and have demonstrated resistance to almost all classes of drugs. A combination of cell wall acting agents and high-level aminoglycosides is a commonly used regimen for serious infections, but resistance to either renders the synergism ineffective. Vancomycin is the drug of choice for life-threatening infections, but there have been increasing reports of resistance to the drug. Vancomycin-resistant enterococci (VRE) infection is usually preceded by gastrointestinal colonization. Aim: This study was carried out to determine the antimicrobial resistance profile of Enterococcus species isolated from stool and the prevalence of VRE. Materials and Methods: Enterococci were identified from stool samples based on characteristic growth patterns on Bile Esculin Agar and MacConkey agar and growth in 6.5% sodium chloride broth. Speciation was by conventional biochemical identification. Antibiotic susceptibility testing and screening for high-level aminoglycoside resistance (HLAR) were done by modified Kirby–Bauer disk diffusion technique. Susceptibility of isolates to linezolid, penicillin, nitrofurantoin, high-level gentamicin and streptomycin, tetracycline, ciprofloxacin, vancomycin, and teicoplanin was tested. VRE screening was done using a chromogenic agar. The polymerase chain reaction was used for confirmation. Results: Nine species of Enterococcus were identified from 561 isolates. The most common species were Enterococcus faecium (46.0%), Enterococcus faecalis (21.6%), Enterococcus gallinarum (18.5%), and Enterococcus casseliflavus (5.2%). Resistance was highest to ciprofloxacin, tetracycline, and nitrofurantoin. Lowest resistance was to vancomycin, teicoplanin, gentamicin, and linezolid. VRE prevalence rate was 1.1% and that of HLAR was 20.7%. All VRE had vanA gene. Conclusion: Overall, E. faecium was the predominant species. Highest resistance was to ciprofloxacin and tetracycline.","PeriodicalId":307224,"journal":{"name":"Annals of Tropical Pathology","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Antimicrobial resistance pattern of enterococci isolated from stool samples in a tertiary hospital in Nigeria\",\"authors\":\"S. Shettima, K. Iregbu\",\"doi\":\"10.4103/atp.atp_1_19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: Enterococci cause infections both in and out of the hospital setting and have demonstrated resistance to almost all classes of drugs. A combination of cell wall acting agents and high-level aminoglycosides is a commonly used regimen for serious infections, but resistance to either renders the synergism ineffective. Vancomycin is the drug of choice for life-threatening infections, but there have been increasing reports of resistance to the drug. Vancomycin-resistant enterococci (VRE) infection is usually preceded by gastrointestinal colonization. Aim: This study was carried out to determine the antimicrobial resistance profile of Enterococcus species isolated from stool and the prevalence of VRE. Materials and Methods: Enterococci were identified from stool samples based on characteristic growth patterns on Bile Esculin Agar and MacConkey agar and growth in 6.5% sodium chloride broth. Speciation was by conventional biochemical identification. Antibiotic susceptibility testing and screening for high-level aminoglycoside resistance (HLAR) were done by modified Kirby–Bauer disk diffusion technique. Susceptibility of isolates to linezolid, penicillin, nitrofurantoin, high-level gentamicin and streptomycin, tetracycline, ciprofloxacin, vancomycin, and teicoplanin was tested. VRE screening was done using a chromogenic agar. The polymerase chain reaction was used for confirmation. Results: Nine species of Enterococcus were identified from 561 isolates. The most common species were Enterococcus faecium (46.0%), Enterococcus faecalis (21.6%), Enterococcus gallinarum (18.5%), and Enterococcus casseliflavus (5.2%). Resistance was highest to ciprofloxacin, tetracycline, and nitrofurantoin. Lowest resistance was to vancomycin, teicoplanin, gentamicin, and linezolid. VRE prevalence rate was 1.1% and that of HLAR was 20.7%. All VRE had vanA gene. Conclusion: Overall, E. faecium was the predominant species. Highest resistance was to ciprofloxacin and tetracycline.\",\"PeriodicalId\":307224,\"journal\":{\"name\":\"Annals of Tropical Pathology\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Tropical Pathology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4103/atp.atp_1_19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Tropical Pathology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/atp.atp_1_19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Antimicrobial resistance pattern of enterococci isolated from stool samples in a tertiary hospital in Nigeria
Background: Enterococci cause infections both in and out of the hospital setting and have demonstrated resistance to almost all classes of drugs. A combination of cell wall acting agents and high-level aminoglycosides is a commonly used regimen for serious infections, but resistance to either renders the synergism ineffective. Vancomycin is the drug of choice for life-threatening infections, but there have been increasing reports of resistance to the drug. Vancomycin-resistant enterococci (VRE) infection is usually preceded by gastrointestinal colonization. Aim: This study was carried out to determine the antimicrobial resistance profile of Enterococcus species isolated from stool and the prevalence of VRE. Materials and Methods: Enterococci were identified from stool samples based on characteristic growth patterns on Bile Esculin Agar and MacConkey agar and growth in 6.5% sodium chloride broth. Speciation was by conventional biochemical identification. Antibiotic susceptibility testing and screening for high-level aminoglycoside resistance (HLAR) were done by modified Kirby–Bauer disk diffusion technique. Susceptibility of isolates to linezolid, penicillin, nitrofurantoin, high-level gentamicin and streptomycin, tetracycline, ciprofloxacin, vancomycin, and teicoplanin was tested. VRE screening was done using a chromogenic agar. The polymerase chain reaction was used for confirmation. Results: Nine species of Enterococcus were identified from 561 isolates. The most common species were Enterococcus faecium (46.0%), Enterococcus faecalis (21.6%), Enterococcus gallinarum (18.5%), and Enterococcus casseliflavus (5.2%). Resistance was highest to ciprofloxacin, tetracycline, and nitrofurantoin. Lowest resistance was to vancomycin, teicoplanin, gentamicin, and linezolid. VRE prevalence rate was 1.1% and that of HLAR was 20.7%. All VRE had vanA gene. Conclusion: Overall, E. faecium was the predominant species. Highest resistance was to ciprofloxacin and tetracycline.