SP-PIM:一种22.41TFLOPS/W, 8.81 epoch /Sec的基于本地错误预测的内存超级流水线处理加速器

Jung-Hoon Kim, Jaehoon Heo, Won-Ok Han, Jaeuk Kim, Joo-Young Kim
{"title":"SP-PIM:一种22.41TFLOPS/W, 8.81 epoch /Sec的基于本地错误预测的内存超级流水线处理加速器","authors":"Jung-Hoon Kim, Jaehoon Heo, Won-Ok Han, Jaeuk Kim, Joo-Young Kim","doi":"10.23919/VLSITechnologyandCir57934.2023.10185428","DOIUrl":null,"url":null,"abstract":"This paper presents SP-PIM that demonstrates real-time on-device learning based on the holistic, multi-level pipelining scheme enabled by local error prediction. It introduces the local error prediction unit to make the training algorithm pipelineable, while reducing computation overhead and overall external memory access based on power-of-two arithmetic operations and random weights. Its double-buffered PIM macro is designed for performing both forward propagation and gradient calculation, while the dual-sparsity-aware circuits exploit sparsity in activation and error. Finally, the 5.76mm2 SP-PIM chip fabricated in 28nm process achieves 8.81Epochs/Sec model training on chip with the state-of-the-art 560.6GFLOPS/mm2 area efficiency and 22.4TFLOPS/W power efficiency.","PeriodicalId":317958,"journal":{"name":"2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SP-PIM: A 22.41TFLOPS/W, 8.81Epochs/Sec Super-Pipelined Processing-In-Memory Accelerator with Local Error Prediction for On-Device Learning\",\"authors\":\"Jung-Hoon Kim, Jaehoon Heo, Won-Ok Han, Jaeuk Kim, Joo-Young Kim\",\"doi\":\"10.23919/VLSITechnologyandCir57934.2023.10185428\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents SP-PIM that demonstrates real-time on-device learning based on the holistic, multi-level pipelining scheme enabled by local error prediction. It introduces the local error prediction unit to make the training algorithm pipelineable, while reducing computation overhead and overall external memory access based on power-of-two arithmetic operations and random weights. Its double-buffered PIM macro is designed for performing both forward propagation and gradient calculation, while the dual-sparsity-aware circuits exploit sparsity in activation and error. Finally, the 5.76mm2 SP-PIM chip fabricated in 28nm process achieves 8.81Epochs/Sec model training on chip with the state-of-the-art 560.6GFLOPS/mm2 area efficiency and 22.4TFLOPS/W power efficiency.\",\"PeriodicalId\":317958,\"journal\":{\"name\":\"2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/VLSITechnologyandCir57934.2023.10185428\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/VLSITechnologyandCir57934.2023.10185428","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出的SP-PIM演示了基于整体的实时设备上学习,通过局部误差预测实现多级流水线方案。它引入了局部误差预测单元,使训练算法可流水线化,同时基于2次幂算术运算和随机权重减少了计算开销和总体外部存储器访问。其双缓冲PIM宏设计用于前向传播和梯度计算,而双稀疏感知电路则利用激活和误差的稀疏性。最后,采用28nm工艺制作的5.76mm2 SP-PIM芯片实现了8.81Epochs/Sec的片上模型训练,面积效率为560.6GFLOPS/mm2,功耗效率为22.4TFLOPS/W。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SP-PIM: A 22.41TFLOPS/W, 8.81Epochs/Sec Super-Pipelined Processing-In-Memory Accelerator with Local Error Prediction for On-Device Learning
This paper presents SP-PIM that demonstrates real-time on-device learning based on the holistic, multi-level pipelining scheme enabled by local error prediction. It introduces the local error prediction unit to make the training algorithm pipelineable, while reducing computation overhead and overall external memory access based on power-of-two arithmetic operations and random weights. Its double-buffered PIM macro is designed for performing both forward propagation and gradient calculation, while the dual-sparsity-aware circuits exploit sparsity in activation and error. Finally, the 5.76mm2 SP-PIM chip fabricated in 28nm process achieves 8.81Epochs/Sec model training on chip with the state-of-the-art 560.6GFLOPS/mm2 area efficiency and 22.4TFLOPS/W power efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信