一种改进的可逆电路在线测试技术

Joyati Mondal, D. K. Das
{"title":"一种改进的可逆电路在线测试技术","authors":"Joyati Mondal, D. K. Das","doi":"10.1109/ISDCS49393.2020.9262971","DOIUrl":null,"url":null,"abstract":"The emerging technology of reversible circuits offers a potential solution to the synthesis of ultra low-power quantum computing systems. A reversible circuit can be envisaged as a cascade of reversible gates only, such as Toffoli gate, which has two components: k control bits and a target bit (k-CNOT), k ≥1. While analyzing testability issues in a reversible circuit, the missing-gate fault model is often used for modeling physical defects in k-CNOT gates. In this paper, we propose online design-for-testability (DFT) technique. The proposed method is an improved version of an earlier work by Kole et. al. Our method yields less overhead in terms of quantum cost as compared to the original approach. The method is advantageous for circuits where consecutive gates occur frequently with the same set of controls.","PeriodicalId":177307,"journal":{"name":"2020 International Symposium on Devices, Circuits and Systems (ISDCS)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Improved Online Testing Technique For Reversible Circuits\",\"authors\":\"Joyati Mondal, D. K. Das\",\"doi\":\"10.1109/ISDCS49393.2020.9262971\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The emerging technology of reversible circuits offers a potential solution to the synthesis of ultra low-power quantum computing systems. A reversible circuit can be envisaged as a cascade of reversible gates only, such as Toffoli gate, which has two components: k control bits and a target bit (k-CNOT), k ≥1. While analyzing testability issues in a reversible circuit, the missing-gate fault model is often used for modeling physical defects in k-CNOT gates. In this paper, we propose online design-for-testability (DFT) technique. The proposed method is an improved version of an earlier work by Kole et. al. Our method yields less overhead in terms of quantum cost as compared to the original approach. The method is advantageous for circuits where consecutive gates occur frequently with the same set of controls.\",\"PeriodicalId\":177307,\"journal\":{\"name\":\"2020 International Symposium on Devices, Circuits and Systems (ISDCS)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Symposium on Devices, Circuits and Systems (ISDCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISDCS49393.2020.9262971\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Symposium on Devices, Circuits and Systems (ISDCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDCS49393.2020.9262971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

可逆电路的新兴技术为超低功耗量子计算系统的合成提供了一个潜在的解决方案。可逆电路可以设想为可逆门的级联,例如Toffoli门,它有两个组成部分:k个控制位和一个目标位(k- cnot), k≥1。在分析可逆电路的可测试性问题时,经常使用缺门故障模型来模拟k-CNOT门的物理缺陷。本文提出了在线可测试性设计(DFT)技术。提出的方法是Kole等人早期工作的改进版本。与原始方法相比,我们的方法在量子成本方面产生更少的开销。该方法是有利的电路,连续门发生频繁与同一组控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Improved Online Testing Technique For Reversible Circuits
The emerging technology of reversible circuits offers a potential solution to the synthesis of ultra low-power quantum computing systems. A reversible circuit can be envisaged as a cascade of reversible gates only, such as Toffoli gate, which has two components: k control bits and a target bit (k-CNOT), k ≥1. While analyzing testability issues in a reversible circuit, the missing-gate fault model is often used for modeling physical defects in k-CNOT gates. In this paper, we propose online design-for-testability (DFT) technique. The proposed method is an improved version of an earlier work by Kole et. al. Our method yields less overhead in terms of quantum cost as compared to the original approach. The method is advantageous for circuits where consecutive gates occur frequently with the same set of controls.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信