F. Bruder, T. Fäcke, R. Hagen, Dennis Hönel, E. Orselli, C. Rewitz, T. Rölle, G. Walze
{"title":"具有高布拉格选择性的衍射光学:Bayfol®HX光聚合物薄膜中的体积全息光学元件","authors":"F. Bruder, T. Fäcke, R. Hagen, Dennis Hönel, E. Orselli, C. Rewitz, T. Rölle, G. Walze","doi":"10.1117/12.2191587","DOIUrl":null,"url":null,"abstract":"For a long time volume Holographic Optical Elements (vHOE) have been discussed as an alternative, but were hampered by a lack of suitable materials. They provide several benefits over surface corrugated diffractive optical element like high diffraction efficiency due to their ability to reconstruct a single diffraction order, freedom of optical design by freely setting the replay angles and adjusting their bandwidth by a selection of the vHOE’s thickness. Additional interesting features are related to their high Bragg selectivity providing transparent films for off-Bragg illumination. In this paper we report on our newly developed photopolymer film technology (Bayfol® HX) that uniquely requires no post processing after holographic exposure. We explain the governing non-local polymerization driven diffusion process leading to an active mass transport triggered by constructive interference. Key aspects of the recording process and their impact on index modulation formation is discussed. The influence on photopolymer film thickness on the bandwidth is shown. A comparison between coupled wave theory (CWT) simulation and experimental results is given. There are two basic recording geometries: reflection and transmission vHOEs. We explain consequences of how to record them properly and discuss in more detail the special challenges in transmission hologram recording. Here beam ratio and customization of photopolymer film properties can be applied most beneficially to achieve highest diffraction efficiency.","PeriodicalId":212434,"journal":{"name":"SPIE Optical Systems Design","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Diffractive optics with high Bragg selectivity: volume holographic optical elements in Bayfol® HX photopolymer film\",\"authors\":\"F. Bruder, T. Fäcke, R. Hagen, Dennis Hönel, E. Orselli, C. Rewitz, T. Rölle, G. Walze\",\"doi\":\"10.1117/12.2191587\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a long time volume Holographic Optical Elements (vHOE) have been discussed as an alternative, but were hampered by a lack of suitable materials. They provide several benefits over surface corrugated diffractive optical element like high diffraction efficiency due to their ability to reconstruct a single diffraction order, freedom of optical design by freely setting the replay angles and adjusting their bandwidth by a selection of the vHOE’s thickness. Additional interesting features are related to their high Bragg selectivity providing transparent films for off-Bragg illumination. In this paper we report on our newly developed photopolymer film technology (Bayfol® HX) that uniquely requires no post processing after holographic exposure. We explain the governing non-local polymerization driven diffusion process leading to an active mass transport triggered by constructive interference. Key aspects of the recording process and their impact on index modulation formation is discussed. The influence on photopolymer film thickness on the bandwidth is shown. A comparison between coupled wave theory (CWT) simulation and experimental results is given. There are two basic recording geometries: reflection and transmission vHOEs. We explain consequences of how to record them properly and discuss in more detail the special challenges in transmission hologram recording. Here beam ratio and customization of photopolymer film properties can be applied most beneficially to achieve highest diffraction efficiency.\",\"PeriodicalId\":212434,\"journal\":{\"name\":\"SPIE Optical Systems Design\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPIE Optical Systems Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2191587\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Optical Systems Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2191587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Diffractive optics with high Bragg selectivity: volume holographic optical elements in Bayfol® HX photopolymer film
For a long time volume Holographic Optical Elements (vHOE) have been discussed as an alternative, but were hampered by a lack of suitable materials. They provide several benefits over surface corrugated diffractive optical element like high diffraction efficiency due to their ability to reconstruct a single diffraction order, freedom of optical design by freely setting the replay angles and adjusting their bandwidth by a selection of the vHOE’s thickness. Additional interesting features are related to their high Bragg selectivity providing transparent films for off-Bragg illumination. In this paper we report on our newly developed photopolymer film technology (Bayfol® HX) that uniquely requires no post processing after holographic exposure. We explain the governing non-local polymerization driven diffusion process leading to an active mass transport triggered by constructive interference. Key aspects of the recording process and their impact on index modulation formation is discussed. The influence on photopolymer film thickness on the bandwidth is shown. A comparison between coupled wave theory (CWT) simulation and experimental results is given. There are two basic recording geometries: reflection and transmission vHOEs. We explain consequences of how to record them properly and discuss in more detail the special challenges in transmission hologram recording. Here beam ratio and customization of photopolymer film properties can be applied most beneficially to achieve highest diffraction efficiency.