{"title":"自密实混凝土流变学与泵送","authors":"D. Feys, G. Schutter, R. Verhoeven","doi":"10.14359/51663203","DOIUrl":null,"url":null,"abstract":"Self-compacting concrete is a very flowable cementitious material, which does not need external vibration during casting. On the other hand, somewhat surprisingly, pumping of self-compacting concrete requires higher pumping pressures than traditional concrete. This paradox can be fundamentally explained by studying the rheological properties of self-compacting concrete and linking them to pumping operations. \nThis paper describes full-scale pumping tests on self-compacting concrete. The first part deals with the influence of the rheological properties of the concrete on the pumping process, showing that viscosity and shear thickening have a major importance. The second part discusses the influence of pumping on the rheological properties of the concrete, clearly showing a decrease in viscosity due to pumping. Structural breakdown and air content change the rheological properties of the SCC. If structural breakdown dominates the effects of the air content, the yield stress and plastic viscosity will decrease, and the SCC will show a larger tendency to segregate. If the effects of the air content dominate, the yield stress of the SCC will increase, possibly leading to improper filling of the formwork.","PeriodicalId":232163,"journal":{"name":"SP-261: 10th ACI International Conference on Recent Advances in Concrete Technology and Sustainability Issues","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Rheology and Pumping of Self-Compacting Concrete\",\"authors\":\"D. Feys, G. Schutter, R. Verhoeven\",\"doi\":\"10.14359/51663203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Self-compacting concrete is a very flowable cementitious material, which does not need external vibration during casting. On the other hand, somewhat surprisingly, pumping of self-compacting concrete requires higher pumping pressures than traditional concrete. This paradox can be fundamentally explained by studying the rheological properties of self-compacting concrete and linking them to pumping operations. \\nThis paper describes full-scale pumping tests on self-compacting concrete. The first part deals with the influence of the rheological properties of the concrete on the pumping process, showing that viscosity and shear thickening have a major importance. The second part discusses the influence of pumping on the rheological properties of the concrete, clearly showing a decrease in viscosity due to pumping. Structural breakdown and air content change the rheological properties of the SCC. If structural breakdown dominates the effects of the air content, the yield stress and plastic viscosity will decrease, and the SCC will show a larger tendency to segregate. If the effects of the air content dominate, the yield stress of the SCC will increase, possibly leading to improper filling of the formwork.\",\"PeriodicalId\":232163,\"journal\":{\"name\":\"SP-261: 10th ACI International Conference on Recent Advances in Concrete Technology and Sustainability Issues\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SP-261: 10th ACI International Conference on Recent Advances in Concrete Technology and Sustainability Issues\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14359/51663203\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SP-261: 10th ACI International Conference on Recent Advances in Concrete Technology and Sustainability Issues","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14359/51663203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Self-compacting concrete is a very flowable cementitious material, which does not need external vibration during casting. On the other hand, somewhat surprisingly, pumping of self-compacting concrete requires higher pumping pressures than traditional concrete. This paradox can be fundamentally explained by studying the rheological properties of self-compacting concrete and linking them to pumping operations.
This paper describes full-scale pumping tests on self-compacting concrete. The first part deals with the influence of the rheological properties of the concrete on the pumping process, showing that viscosity and shear thickening have a major importance. The second part discusses the influence of pumping on the rheological properties of the concrete, clearly showing a decrease in viscosity due to pumping. Structural breakdown and air content change the rheological properties of the SCC. If structural breakdown dominates the effects of the air content, the yield stress and plastic viscosity will decrease, and the SCC will show a larger tendency to segregate. If the effects of the air content dominate, the yield stress of the SCC will increase, possibly leading to improper filling of the formwork.