Sven Alexander Horsinka, Rolf Meyer, J. Wagner, R. Buchty, Mladen Berekovic
{"title":"在NoC设计探索中,RTL到TLM抽象有利于仿真性能和建模生产力","authors":"Sven Alexander Horsinka, Rolf Meyer, J. Wagner, R. Buchty, Mladen Berekovic","doi":"10.1145/2685342.2685349","DOIUrl":null,"url":null,"abstract":"Growing demand to integrate more functionality into single-chip solutions require novel network-based interconnection models. The resulting increase in design complexity and strict time-to-market restrictions endanger the viability of Register Transfer Level (RTL) centric design processes in the future. To counteract these developments, the abstract design methodologies presented by Transaction Level Modeling (TLM 2.0/SystemC) are gaining popularity. With this paper, we demonstrate the benefits of raising the abstraction level by creating an adjustable Network on Chip (NoC) simulation model, satisfying the diverse needs of software and system engineers. Based on a proven and tested RTL NoC design, we applied modeling methods defined in the TLM 2.0 standard, creating flexible simulation model. It provides high timing accuracy, enabling precise behavioral and performance analysis. In addition, higher simulation speeds are achieved by adjusting the timing accuracy. The results demonstrate the advantages of variable simulation accuracy: simulation runs are accelerated by more than two orders of magnitude with performance and behavior assessment exposing a limited latency error of less than four clock cycles compared to the RTL model.","PeriodicalId":344147,"journal":{"name":"Network on Chip Architectures","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On RTL to TLM Abstraction to Benefit Simulation Performance and Modeling Productivity in NoC Design Exploration\",\"authors\":\"Sven Alexander Horsinka, Rolf Meyer, J. Wagner, R. Buchty, Mladen Berekovic\",\"doi\":\"10.1145/2685342.2685349\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Growing demand to integrate more functionality into single-chip solutions require novel network-based interconnection models. The resulting increase in design complexity and strict time-to-market restrictions endanger the viability of Register Transfer Level (RTL) centric design processes in the future. To counteract these developments, the abstract design methodologies presented by Transaction Level Modeling (TLM 2.0/SystemC) are gaining popularity. With this paper, we demonstrate the benefits of raising the abstraction level by creating an adjustable Network on Chip (NoC) simulation model, satisfying the diverse needs of software and system engineers. Based on a proven and tested RTL NoC design, we applied modeling methods defined in the TLM 2.0 standard, creating flexible simulation model. It provides high timing accuracy, enabling precise behavioral and performance analysis. In addition, higher simulation speeds are achieved by adjusting the timing accuracy. The results demonstrate the advantages of variable simulation accuracy: simulation runs are accelerated by more than two orders of magnitude with performance and behavior assessment exposing a limited latency error of less than four clock cycles compared to the RTL model.\",\"PeriodicalId\":344147,\"journal\":{\"name\":\"Network on Chip Architectures\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Network on Chip Architectures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2685342.2685349\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network on Chip Architectures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2685342.2685349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On RTL to TLM Abstraction to Benefit Simulation Performance and Modeling Productivity in NoC Design Exploration
Growing demand to integrate more functionality into single-chip solutions require novel network-based interconnection models. The resulting increase in design complexity and strict time-to-market restrictions endanger the viability of Register Transfer Level (RTL) centric design processes in the future. To counteract these developments, the abstract design methodologies presented by Transaction Level Modeling (TLM 2.0/SystemC) are gaining popularity. With this paper, we demonstrate the benefits of raising the abstraction level by creating an adjustable Network on Chip (NoC) simulation model, satisfying the diverse needs of software and system engineers. Based on a proven and tested RTL NoC design, we applied modeling methods defined in the TLM 2.0 standard, creating flexible simulation model. It provides high timing accuracy, enabling precise behavioral and performance analysis. In addition, higher simulation speeds are achieved by adjusting the timing accuracy. The results demonstrate the advantages of variable simulation accuracy: simulation runs are accelerated by more than two orders of magnitude with performance and behavior assessment exposing a limited latency error of less than four clock cycles compared to the RTL model.