含硅SiC/SiC复合材料中电阻的组成和层位理解

J. E. Rassi, G. Morscher
{"title":"含硅SiC/SiC复合材料中电阻的组成和层位理解","authors":"J. E. Rassi, G. Morscher","doi":"10.1115/gt2021-60395","DOIUrl":null,"url":null,"abstract":"\n Electrical resistance, also known as direct current potential drop (DCPD), has been demonstrated as an enabling means to monitor damage evolution in SiC-based ceramic matrix composites. For laminate composites, it has become apparent that the location and orientation of SiC fibers, free Si and in some cases insertion of C rods can greatly affect the measured resistance. In addition, the nature of crack growth through the different plies which consist of different constituents will have different effects on the change in resistance. Therefore, both experimental and modeling approaches as to the resistance and change in resistance for different laminate architectures based on the nature of constituent content and orientation are needed to utilize and optimize electrical resistance as a health-monitoring technique. In this work, unidirectional and cross-ply laminate composites have been analyzed using a ply-based electrical model. Based on a ply-level circuit model, the change in resistance was modeled for damage development. It is believed that this can serve as a basis for tailoring the architecture/constituent content to create a “smarter” composite.","PeriodicalId":129194,"journal":{"name":"Volume 6: Ceramics and Ceramic Composites; Coal, Biomass, Hydrogen, and Alternative Fuels; Microturbines, Turbochargers, and Small Turbomachines","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Constituent and Ply Level Understanding of Electrical Resistance in Si-Containing SiC/SiC Composites\",\"authors\":\"J. E. Rassi, G. Morscher\",\"doi\":\"10.1115/gt2021-60395\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Electrical resistance, also known as direct current potential drop (DCPD), has been demonstrated as an enabling means to monitor damage evolution in SiC-based ceramic matrix composites. For laminate composites, it has become apparent that the location and orientation of SiC fibers, free Si and in some cases insertion of C rods can greatly affect the measured resistance. In addition, the nature of crack growth through the different plies which consist of different constituents will have different effects on the change in resistance. Therefore, both experimental and modeling approaches as to the resistance and change in resistance for different laminate architectures based on the nature of constituent content and orientation are needed to utilize and optimize electrical resistance as a health-monitoring technique. In this work, unidirectional and cross-ply laminate composites have been analyzed using a ply-based electrical model. Based on a ply-level circuit model, the change in resistance was modeled for damage development. It is believed that this can serve as a basis for tailoring the architecture/constituent content to create a “smarter” composite.\",\"PeriodicalId\":129194,\"journal\":{\"name\":\"Volume 6: Ceramics and Ceramic Composites; Coal, Biomass, Hydrogen, and Alternative Fuels; Microturbines, Turbochargers, and Small Turbomachines\",\"volume\":\"94 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 6: Ceramics and Ceramic Composites; Coal, Biomass, Hydrogen, and Alternative Fuels; Microturbines, Turbochargers, and Small Turbomachines\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/gt2021-60395\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 6: Ceramics and Ceramic Composites; Coal, Biomass, Hydrogen, and Alternative Fuels; Microturbines, Turbochargers, and Small Turbomachines","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/gt2021-60395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

电阻,也称为直流电位降(DCPD),已被证明是监测sic基陶瓷基复合材料损伤演变的有利手段。对于层压复合材料来说,SiC纤维的位置和取向、游离Si以及在某些情况下C棒的插入会极大地影响测量的电阻。此外,由不同成分组成的不同层的裂纹扩展性质对电阻的变化有不同的影响。因此,为了利用和优化电阻作为一种健康监测技术,需要基于成分含量和取向性质的不同层压板结构的电阻和电阻变化的实验和建模方法。在这项工作中,单向和交叉层压复合材料已经使用基于层压的电模型进行了分析。基于铺层电路模型,对电阻的变化进行了损伤发展建模。相信这可以作为裁剪体系结构/组成内容的基础,以创建“更智能”的组合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Constituent and Ply Level Understanding of Electrical Resistance in Si-Containing SiC/SiC Composites
Electrical resistance, also known as direct current potential drop (DCPD), has been demonstrated as an enabling means to monitor damage evolution in SiC-based ceramic matrix composites. For laminate composites, it has become apparent that the location and orientation of SiC fibers, free Si and in some cases insertion of C rods can greatly affect the measured resistance. In addition, the nature of crack growth through the different plies which consist of different constituents will have different effects on the change in resistance. Therefore, both experimental and modeling approaches as to the resistance and change in resistance for different laminate architectures based on the nature of constituent content and orientation are needed to utilize and optimize electrical resistance as a health-monitoring technique. In this work, unidirectional and cross-ply laminate composites have been analyzed using a ply-based electrical model. Based on a ply-level circuit model, the change in resistance was modeled for damage development. It is believed that this can serve as a basis for tailoring the architecture/constituent content to create a “smarter” composite.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信