基于遗传算法的车辆自动识别读取器定位方法

M. Arafeh, Hesham A Rakha
{"title":"基于遗传算法的车辆自动识别读取器定位方法","authors":"M. Arafeh, Hesham A Rakha","doi":"10.1109/ITSC.2005.1520214","DOIUrl":null,"url":null,"abstract":"The paper develops an algorithm for optimally locating surveillance technologies with an emphasis on automatic vehicle identification tag readers by maximizing a travel time reliability objective function. The problem is formulated as a quadratic 0-1 optimization problem where the objective function parameters represent benefit factors that capture travel time variability along specified trips. A genetic algorithm is developed to solve the problem and the computational results are presented using data pertaining to a freeway section in San Antonio, Texas, as well as a number of synthetic test cases, to demonstrate the efficacy of the proposed approach.","PeriodicalId":153203,"journal":{"name":"Proceedings. 2005 IEEE Intelligent Transportation Systems, 2005.","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Genetic algorithm approach for locating automatic vehicle identification readers\",\"authors\":\"M. Arafeh, Hesham A Rakha\",\"doi\":\"10.1109/ITSC.2005.1520214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper develops an algorithm for optimally locating surveillance technologies with an emphasis on automatic vehicle identification tag readers by maximizing a travel time reliability objective function. The problem is formulated as a quadratic 0-1 optimization problem where the objective function parameters represent benefit factors that capture travel time variability along specified trips. A genetic algorithm is developed to solve the problem and the computational results are presented using data pertaining to a freeway section in San Antonio, Texas, as well as a number of synthetic test cases, to demonstrate the efficacy of the proposed approach.\",\"PeriodicalId\":153203,\"journal\":{\"name\":\"Proceedings. 2005 IEEE Intelligent Transportation Systems, 2005.\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 2005 IEEE Intelligent Transportation Systems, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITSC.2005.1520214\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 2005 IEEE Intelligent Transportation Systems, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2005.1520214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文提出了一种以车辆自动识别标签阅读器为重点的监控技术优化定位算法,该算法以最大行程时间可靠性为目标函数。该问题被表述为一个二次0-1优化问题,其中目标函数参数表示捕获沿指定行程的旅行时间变异性的效益因子。提出了一种遗传算法来解决这一问题,并使用德克萨斯州圣安东尼奥高速公路路段的数据以及一些综合测试用例给出了计算结果,以证明所提出方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Genetic algorithm approach for locating automatic vehicle identification readers
The paper develops an algorithm for optimally locating surveillance technologies with an emphasis on automatic vehicle identification tag readers by maximizing a travel time reliability objective function. The problem is formulated as a quadratic 0-1 optimization problem where the objective function parameters represent benefit factors that capture travel time variability along specified trips. A genetic algorithm is developed to solve the problem and the computational results are presented using data pertaining to a freeway section in San Antonio, Texas, as well as a number of synthetic test cases, to demonstrate the efficacy of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信