H. F. Hawari, S. M. Saad, N. M. Samsudin, A. Y. Md Shakaff, Y. Wahab, U. Hashim
{"title":"芒果果实成熟度检测的感官系统","authors":"H. F. Hawari, S. M. Saad, N. M. Samsudin, A. Y. Md Shakaff, Y. Wahab, U. Hashim","doi":"10.1109/CIRCUITSANDSYSTEMS.2013.6671632","DOIUrl":null,"url":null,"abstract":"Olfactory systems are a device that is able to replicate the human olfactory sense. By using Interdigitated Electrode (IDE) structure, a sensor array for detecting mango volatile utilizing molecular imprinted polymer (MIP) as the sensing material was fabricated. Each sensor will be responsible for detecting different volatiles emitted from mango. The novel MIP sensory system able detects gases selectively through an increase in electrical capacitance when the targeted mango gases are adsorbed on the sensor's surface. Each sensor will be first be calibrated by identifying the baseline value prior inserting the mango in the chamber. Once the mango is inserted, the capacitance shift on each sensor will help to determine different mango volatiles being emitted by mango and absorb by each of the sensor. The capacitance shift will be then calculated by an interface circuit to determine the level of mango maturity ranging from non ripe, semi ripe or ripe. By having an array of such sensors, with each IDE tuned to different unique volatiles, a robust and accurate fruit maturity determination can be performed. These studies provide an interesting and alternative solution for agriculture sector to improve the quality of harvest.","PeriodicalId":436232,"journal":{"name":"2013 IEEE International Conference on Circuits and Systems (ICCAS)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Sensory system for detection of Harumanis mango fruit maturity\",\"authors\":\"H. F. Hawari, S. M. Saad, N. M. Samsudin, A. Y. Md Shakaff, Y. Wahab, U. Hashim\",\"doi\":\"10.1109/CIRCUITSANDSYSTEMS.2013.6671632\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Olfactory systems are a device that is able to replicate the human olfactory sense. By using Interdigitated Electrode (IDE) structure, a sensor array for detecting mango volatile utilizing molecular imprinted polymer (MIP) as the sensing material was fabricated. Each sensor will be responsible for detecting different volatiles emitted from mango. The novel MIP sensory system able detects gases selectively through an increase in electrical capacitance when the targeted mango gases are adsorbed on the sensor's surface. Each sensor will be first be calibrated by identifying the baseline value prior inserting the mango in the chamber. Once the mango is inserted, the capacitance shift on each sensor will help to determine different mango volatiles being emitted by mango and absorb by each of the sensor. The capacitance shift will be then calculated by an interface circuit to determine the level of mango maturity ranging from non ripe, semi ripe or ripe. By having an array of such sensors, with each IDE tuned to different unique volatiles, a robust and accurate fruit maturity determination can be performed. These studies provide an interesting and alternative solution for agriculture sector to improve the quality of harvest.\",\"PeriodicalId\":436232,\"journal\":{\"name\":\"2013 IEEE International Conference on Circuits and Systems (ICCAS)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Circuits and Systems (ICCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIRCUITSANDSYSTEMS.2013.6671632\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Circuits and Systems (ICCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIRCUITSANDSYSTEMS.2013.6671632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sensory system for detection of Harumanis mango fruit maturity
Olfactory systems are a device that is able to replicate the human olfactory sense. By using Interdigitated Electrode (IDE) structure, a sensor array for detecting mango volatile utilizing molecular imprinted polymer (MIP) as the sensing material was fabricated. Each sensor will be responsible for detecting different volatiles emitted from mango. The novel MIP sensory system able detects gases selectively through an increase in electrical capacitance when the targeted mango gases are adsorbed on the sensor's surface. Each sensor will be first be calibrated by identifying the baseline value prior inserting the mango in the chamber. Once the mango is inserted, the capacitance shift on each sensor will help to determine different mango volatiles being emitted by mango and absorb by each of the sensor. The capacitance shift will be then calculated by an interface circuit to determine the level of mango maturity ranging from non ripe, semi ripe or ripe. By having an array of such sensors, with each IDE tuned to different unique volatiles, a robust and accurate fruit maturity determination can be performed. These studies provide an interesting and alternative solution for agriculture sector to improve the quality of harvest.