准尼尔森逻辑中的否定与蕴涵

Thiago Nascimento, U. Rivieccio
{"title":"准尼尔森逻辑中的否定与蕴涵","authors":"Thiago Nascimento, U. Rivieccio","doi":"10.21146/2074-1472-2021-27-1-107-123","DOIUrl":null,"url":null,"abstract":"Quasi-Nelson logic is a recently-introduced generalization of Nelson’s constructive logic with strong negation to a non-involutive setting. In the present paper we axiomatize the negation-implication fragment of quasi-Nelson logic (QNI-logic), which constitutes in a sense the algebraizable core of quasi-Nelson logic. We introduce a finite Hilbert-style calculus for QNI-logic, showing completeness and algebraizability with respect to the variety of QNI-algebras. Members of the latter class, also introduced and investigated in a recent paper, are precisely the negation-implication subreducts of quasi-Nelson algebras. Relying on our completeness result, we also show how the negation-implication fragments of intuitionistic logic and Nelson’s constructive logic may both be obtained as schematic extensions of QNI-logic.","PeriodicalId":155189,"journal":{"name":"Logical Investigations","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Negation and Implication in Quasi-Nelson Logic\",\"authors\":\"Thiago Nascimento, U. Rivieccio\",\"doi\":\"10.21146/2074-1472-2021-27-1-107-123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quasi-Nelson logic is a recently-introduced generalization of Nelson’s constructive logic with strong negation to a non-involutive setting. In the present paper we axiomatize the negation-implication fragment of quasi-Nelson logic (QNI-logic), which constitutes in a sense the algebraizable core of quasi-Nelson logic. We introduce a finite Hilbert-style calculus for QNI-logic, showing completeness and algebraizability with respect to the variety of QNI-algebras. Members of the latter class, also introduced and investigated in a recent paper, are precisely the negation-implication subreducts of quasi-Nelson algebras. Relying on our completeness result, we also show how the negation-implication fragments of intuitionistic logic and Nelson’s constructive logic may both be obtained as schematic extensions of QNI-logic.\",\"PeriodicalId\":155189,\"journal\":{\"name\":\"Logical Investigations\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Logical Investigations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21146/2074-1472-2021-27-1-107-123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Logical Investigations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21146/2074-1472-2021-27-1-107-123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

拟纳尔逊逻辑是纳尔逊构造逻辑的一种新推广,具有很强的否定性。本文公理化了拟nelson逻辑的否定蕴涵片段(QNI-logic),它在某种意义上构成了拟nelson逻辑的可代数核心。我们引入了qni -逻辑的有限hilbert式演算,证明了qni -代数的完备性和可代数性。后一类的成员,在最近的一篇论文中也被介绍和研究,正是准nelson代数的否定蕴涵子约。基于我们的完备性结果,我们还证明了直觉逻辑和Nelson构造逻辑的否定-蕴涵片段都可以作为qni逻辑的图式扩展而得到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Negation and Implication in Quasi-Nelson Logic
Quasi-Nelson logic is a recently-introduced generalization of Nelson’s constructive logic with strong negation to a non-involutive setting. In the present paper we axiomatize the negation-implication fragment of quasi-Nelson logic (QNI-logic), which constitutes in a sense the algebraizable core of quasi-Nelson logic. We introduce a finite Hilbert-style calculus for QNI-logic, showing completeness and algebraizability with respect to the variety of QNI-algebras. Members of the latter class, also introduced and investigated in a recent paper, are precisely the negation-implication subreducts of quasi-Nelson algebras. Relying on our completeness result, we also show how the negation-implication fragments of intuitionistic logic and Nelson’s constructive logic may both be obtained as schematic extensions of QNI-logic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信