基于高斯过程的位置感知协同频谱感知

Ido Nevat, G. Peters, I. Collings
{"title":"基于高斯过程的位置感知协同频谱感知","authors":"Ido Nevat, G. Peters, I. Collings","doi":"10.1109/AusCTW.2012.6164900","DOIUrl":null,"url":null,"abstract":"We present a new paradigm to perform spatial spectrum sensing in cooperative cognitive radio networks. In these networks, nodes cooperate to infer information on spectral and spatial occupancy. Following the recently proposed interference temperature metric, we formulate the problem via semi-parametric Gaussian Process modelling. This allows for a development of a flexible probabilistic framework to perform inference on a function space. Our methodology enables sensing spatial reusable zones, by means of a collaborative scheme to estimate the distribution of power emitted by the primary user in space. Hence, rather than a conventional binary decision process in space (busy/idle), our scheme provides a probabilistic spectrum access scheme for cognitive radio networks. We develop an algorithm, based on the Iterated Conditioning on the Modes (ICM) estimation to predict spatial spectral holes at any arbitrary spatial location. The ICM approach is computationally efficient, and suitable for real world applications. Numerical results demonstrate the benefits obtained by the proposed algorithm.","PeriodicalId":320391,"journal":{"name":"2012 Australian Communications Theory Workshop (AusCTW)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Location-aware cooperative spectrum sensing via Gaussian Processes\",\"authors\":\"Ido Nevat, G. Peters, I. Collings\",\"doi\":\"10.1109/AusCTW.2012.6164900\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a new paradigm to perform spatial spectrum sensing in cooperative cognitive radio networks. In these networks, nodes cooperate to infer information on spectral and spatial occupancy. Following the recently proposed interference temperature metric, we formulate the problem via semi-parametric Gaussian Process modelling. This allows for a development of a flexible probabilistic framework to perform inference on a function space. Our methodology enables sensing spatial reusable zones, by means of a collaborative scheme to estimate the distribution of power emitted by the primary user in space. Hence, rather than a conventional binary decision process in space (busy/idle), our scheme provides a probabilistic spectrum access scheme for cognitive radio networks. We develop an algorithm, based on the Iterated Conditioning on the Modes (ICM) estimation to predict spatial spectral holes at any arbitrary spatial location. The ICM approach is computationally efficient, and suitable for real world applications. Numerical results demonstrate the benefits obtained by the proposed algorithm.\",\"PeriodicalId\":320391,\"journal\":{\"name\":\"2012 Australian Communications Theory Workshop (AusCTW)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Australian Communications Theory Workshop (AusCTW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AusCTW.2012.6164900\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Australian Communications Theory Workshop (AusCTW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AusCTW.2012.6164900","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

我们提出了一种在协作认知无线电网络中进行空间频谱感知的新范式。在这些网络中,节点合作推断频谱和空间占用信息。根据最近提出的干涉温度度量,我们通过半参数高斯过程建模来表达问题。这允许开发灵活的概率框架,以便在函数空间上执行推理。我们的方法能够感知空间可重复使用区域,通过协作方案来估计空间中主要用户发出的功率分布。因此,我们的方案为认知无线电网络提供了一种概率频谱接入方案,而不是传统的空间二进制决策过程(繁忙/空闲)。我们提出了一种基于模态迭代条件(ICM)估计的算法来预测任意空间位置的空间光谱洞。ICM方法计算效率高,适合实际应用。数值结果验证了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Location-aware cooperative spectrum sensing via Gaussian Processes
We present a new paradigm to perform spatial spectrum sensing in cooperative cognitive radio networks. In these networks, nodes cooperate to infer information on spectral and spatial occupancy. Following the recently proposed interference temperature metric, we formulate the problem via semi-parametric Gaussian Process modelling. This allows for a development of a flexible probabilistic framework to perform inference on a function space. Our methodology enables sensing spatial reusable zones, by means of a collaborative scheme to estimate the distribution of power emitted by the primary user in space. Hence, rather than a conventional binary decision process in space (busy/idle), our scheme provides a probabilistic spectrum access scheme for cognitive radio networks. We develop an algorithm, based on the Iterated Conditioning on the Modes (ICM) estimation to predict spatial spectral holes at any arbitrary spatial location. The ICM approach is computationally efficient, and suitable for real world applications. Numerical results demonstrate the benefits obtained by the proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信