Peter Gammie, Antony Lloyd Hosking, Kai Engelhardt
{"title":"轻松安全:经过验证的实时垃圾收集x86-TSO","authors":"Peter Gammie, Antony Lloyd Hosking, Kai Engelhardt","doi":"10.1145/2737924.2738006","DOIUrl":null,"url":null,"abstract":"We report on a machine-checked verification of safety for a state-of-the-art, on-the-fly, concurrent, mark-sweep garbage collector that is designed for multi-core architectures with weak memory consistency. The proof explicitly incorporates the relaxed memory semantics of x86 multiprocessors. To our knowledge, this is the first fully machine-checked proof of safety for such a garbage collector. We couch the proof in a framework that system implementers will find appealing, with the fundamental components of the system specified in a simple and intuitive programming language. The abstract model is detailed enough for its correspondence with an assembly language implementation to be straightforward.","PeriodicalId":104101,"journal":{"name":"Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Relaxing safely: verified on-the-fly garbage collection for x86-TSO\",\"authors\":\"Peter Gammie, Antony Lloyd Hosking, Kai Engelhardt\",\"doi\":\"10.1145/2737924.2738006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report on a machine-checked verification of safety for a state-of-the-art, on-the-fly, concurrent, mark-sweep garbage collector that is designed for multi-core architectures with weak memory consistency. The proof explicitly incorporates the relaxed memory semantics of x86 multiprocessors. To our knowledge, this is the first fully machine-checked proof of safety for such a garbage collector. We couch the proof in a framework that system implementers will find appealing, with the fundamental components of the system specified in a simple and intuitive programming language. The abstract model is detailed enough for its correspondence with an assembly language implementation to be straightforward.\",\"PeriodicalId\":104101,\"journal\":{\"name\":\"Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2737924.2738006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2737924.2738006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Relaxing safely: verified on-the-fly garbage collection for x86-TSO
We report on a machine-checked verification of safety for a state-of-the-art, on-the-fly, concurrent, mark-sweep garbage collector that is designed for multi-core architectures with weak memory consistency. The proof explicitly incorporates the relaxed memory semantics of x86 multiprocessors. To our knowledge, this is the first fully machine-checked proof of safety for such a garbage collector. We couch the proof in a framework that system implementers will find appealing, with the fundamental components of the system specified in a simple and intuitive programming language. The abstract model is detailed enough for its correspondence with an assembly language implementation to be straightforward.