关节式微创手术机械臂的运动控制

Surbhi Gupta, Sankho Turjo Sarkar, Amod Kumar
{"title":"关节式微创手术机械臂的运动控制","authors":"Surbhi Gupta, Sankho Turjo Sarkar, Amod Kumar","doi":"10.1109/ICPEICES.2016.7853054","DOIUrl":null,"url":null,"abstract":"The robotic arm used in minimally invasive surgery enters patient's body through a port which constrains its end-effector translation along two axes. We aim to achieve the minimally-invasive operations using a general articulated robotic arm (GARA). The algorithm is applicable to articulated robotic arm independent of its design; given only end-link is constrained. Geometric transformations based on the constraints acting on the end-link coupled with kinematic-relations obtained using conventional techniques, were used to drive a simulated 6-DOF GARA for minimally-invasive operations. The method was verified by tracing predefined planar and 3D trajectories using this simulated arm. The mean deviation of the traced trajectories was of the order of 10−03cm and the mean absolute error in maintaining remote center-of-motion (RCM) at the port was ∼0 (< 10−15 cm). The proposed method enabled a GARA to perform minimally-invasive operations without specialized design and with sufficient accuracy.","PeriodicalId":305942,"journal":{"name":"2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Kinematic control of an articulated minimally invasive surgical robotic arm\",\"authors\":\"Surbhi Gupta, Sankho Turjo Sarkar, Amod Kumar\",\"doi\":\"10.1109/ICPEICES.2016.7853054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The robotic arm used in minimally invasive surgery enters patient's body through a port which constrains its end-effector translation along two axes. We aim to achieve the minimally-invasive operations using a general articulated robotic arm (GARA). The algorithm is applicable to articulated robotic arm independent of its design; given only end-link is constrained. Geometric transformations based on the constraints acting on the end-link coupled with kinematic-relations obtained using conventional techniques, were used to drive a simulated 6-DOF GARA for minimally-invasive operations. The method was verified by tracing predefined planar and 3D trajectories using this simulated arm. The mean deviation of the traced trajectories was of the order of 10−03cm and the mean absolute error in maintaining remote center-of-motion (RCM) at the port was ∼0 (< 10−15 cm). The proposed method enabled a GARA to perform minimally-invasive operations without specialized design and with sufficient accuracy.\",\"PeriodicalId\":305942,\"journal\":{\"name\":\"2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPEICES.2016.7853054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPEICES.2016.7853054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

用于微创手术的机械臂通过一个端口进入患者体内,该端口限制其末端执行器沿两个轴的平移。我们的目标是使用通用关节机械臂(GARA)实现微创手术。该算法适用于独立于设计的铰接机械臂;给定只有末端连杆是受限的。基于末端连杆约束的几何变换,结合传统技术获得的运动学关系,驱动模拟的六自由度GARA进行微创手术。利用该仿真臂对预定平面和三维轨迹进行跟踪,验证了该方法的有效性。追踪轨迹的平均偏差约为10 - 03cm,在端口保持远程运动中心(RCM)的平均绝对误差为~ 0 (< 10 - 15 cm)。所提出的方法使GARA能够在没有专门设计的情况下进行微创手术,并且具有足够的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Kinematic control of an articulated minimally invasive surgical robotic arm
The robotic arm used in minimally invasive surgery enters patient's body through a port which constrains its end-effector translation along two axes. We aim to achieve the minimally-invasive operations using a general articulated robotic arm (GARA). The algorithm is applicable to articulated robotic arm independent of its design; given only end-link is constrained. Geometric transformations based on the constraints acting on the end-link coupled with kinematic-relations obtained using conventional techniques, were used to drive a simulated 6-DOF GARA for minimally-invasive operations. The method was verified by tracing predefined planar and 3D trajectories using this simulated arm. The mean deviation of the traced trajectories was of the order of 10−03cm and the mean absolute error in maintaining remote center-of-motion (RCM) at the port was ∼0 (< 10−15 cm). The proposed method enabled a GARA to perform minimally-invasive operations without specialized design and with sufficient accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信