自正交码的多项式时间构造及其在量子纠错中的应用

M. Hamada
{"title":"自正交码的多项式时间构造及其在量子纠错中的应用","authors":"M. Hamada","doi":"10.1109/ISIT.2009.5205647","DOIUrl":null,"url":null,"abstract":"A polynomial-time construction of a sequence of self-orthogonal geometric Goppa codes attaining the Tsfasman-Vlăduţ-Zink (TVZ) bound is presented. The issue of constructing such a code sequence was addressed in a context of constructing quantum error-correcting codes (Ashikhmin et al., 2001). Naturally, the obtained construction has implications on quantum error-correcting codes. In particular, the best known asymptotic lower bounds on the largest minimum distance of polynomially constructible quantum error-correcting codes are improved.","PeriodicalId":412925,"journal":{"name":"2009 IEEE International Symposium on Information Theory","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A polynomial-time construction of self-orthogonal codes and applications to quantum error correction\",\"authors\":\"M. Hamada\",\"doi\":\"10.1109/ISIT.2009.5205647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A polynomial-time construction of a sequence of self-orthogonal geometric Goppa codes attaining the Tsfasman-Vlăduţ-Zink (TVZ) bound is presented. The issue of constructing such a code sequence was addressed in a context of constructing quantum error-correcting codes (Ashikhmin et al., 2001). Naturally, the obtained construction has implications on quantum error-correcting codes. In particular, the best known asymptotic lower bounds on the largest minimum distance of polynomially constructible quantum error-correcting codes are improved.\",\"PeriodicalId\":412925,\"journal\":{\"name\":\"2009 IEEE International Symposium on Information Theory\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Symposium on Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2009.5205647\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2009.5205647","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

给出了一组达到Tsfasman-Vlăduţ-Zink (TVZ)界的自正交几何Goppa码序列的多项式时间构造。构建这样一个代码序列的问题在构建量子纠错码的背景下得到了解决(Ashikhmin et al., 2001)。自然地,所获得的结构对量子纠错码有影响。特别地,改进了多项式可构造量子纠错码的最大最小距离的已知渐近下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A polynomial-time construction of self-orthogonal codes and applications to quantum error correction
A polynomial-time construction of a sequence of self-orthogonal geometric Goppa codes attaining the Tsfasman-Vlăduţ-Zink (TVZ) bound is presented. The issue of constructing such a code sequence was addressed in a context of constructing quantum error-correcting codes (Ashikhmin et al., 2001). Naturally, the obtained construction has implications on quantum error-correcting codes. In particular, the best known asymptotic lower bounds on the largest minimum distance of polynomially constructible quantum error-correcting codes are improved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信