S. Ryu, C. Capell, C. Jonas, Y. Lemma, M. O'loughlin, J. Clayton, E. van Brunt, K. Lam, J. Richmond, A. Burk, D. Grider, S. Allen, J. Palmour, A. Agarwal, A. Kadavelugu, S. Bhattacharya
{"title":"4H-SiC超高压igbt","authors":"S. Ryu, C. Capell, C. Jonas, Y. Lemma, M. O'loughlin, J. Clayton, E. van Brunt, K. Lam, J. Richmond, A. Burk, D. Grider, S. Allen, J. Palmour, A. Agarwal, A. Kadavelugu, S. Bhattacharya","doi":"10.1109/WIPDA.2013.6695557","DOIUrl":null,"url":null,"abstract":"A 1 cm × 1 cm 4H-SiC N-IGBT exhibited a blocking voltage of 20.7 kV with a leakage current of 140 μA, which represents the highest blocking voltage reported from an MOS semiconductor power switching device to date. The device showed a VF of 6.4 V at an IC of 20 A, and a differential Ron,sp of 28 mΩ-cm2. Temperature insensitive on-state characteristics were demonstrated. Switching measurements with a supply voltage of 8 kV were performed, and a turn-off time of 720 ns and a turn-off loss of 5.4 mJ were measured at 25°C, for a 8.4 mm × 8.4 mm device with 140 μm drift layer and 5 μm Field Stop buffer layer. It was demonstrated that the charge injection from the backside can be controlled by varying the thickness of the Field-Stop buffer layer. A 55 kW, 1.7 kV to 7 kV boost converter operating at 5 kHz was demonstrated using the 4H-SiC N-IGBT, and an efficiency value of 97.8% was reported.","PeriodicalId":313351,"journal":{"name":"The 1st IEEE Workshop on Wide Bandgap Power Devices and Applications","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"Ultra high voltage IGBTs in 4H-SiC\",\"authors\":\"S. Ryu, C. Capell, C. Jonas, Y. Lemma, M. O'loughlin, J. Clayton, E. van Brunt, K. Lam, J. Richmond, A. Burk, D. Grider, S. Allen, J. Palmour, A. Agarwal, A. Kadavelugu, S. Bhattacharya\",\"doi\":\"10.1109/WIPDA.2013.6695557\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A 1 cm × 1 cm 4H-SiC N-IGBT exhibited a blocking voltage of 20.7 kV with a leakage current of 140 μA, which represents the highest blocking voltage reported from an MOS semiconductor power switching device to date. The device showed a VF of 6.4 V at an IC of 20 A, and a differential Ron,sp of 28 mΩ-cm2. Temperature insensitive on-state characteristics were demonstrated. Switching measurements with a supply voltage of 8 kV were performed, and a turn-off time of 720 ns and a turn-off loss of 5.4 mJ were measured at 25°C, for a 8.4 mm × 8.4 mm device with 140 μm drift layer and 5 μm Field Stop buffer layer. It was demonstrated that the charge injection from the backside can be controlled by varying the thickness of the Field-Stop buffer layer. A 55 kW, 1.7 kV to 7 kV boost converter operating at 5 kHz was demonstrated using the 4H-SiC N-IGBT, and an efficiency value of 97.8% was reported.\",\"PeriodicalId\":313351,\"journal\":{\"name\":\"The 1st IEEE Workshop on Wide Bandgap Power Devices and Applications\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 1st IEEE Workshop on Wide Bandgap Power Devices and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WIPDA.2013.6695557\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 1st IEEE Workshop on Wide Bandgap Power Devices and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIPDA.2013.6695557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36
摘要
1 cm × 1 cm 4H-SiC N-IGBT的阻断电压为20.7 kV,漏电流为140 μA,是迄今为止报道的MOS半导体功率开关器件的最高阻断电压。该器件显示,在20 a的IC下,VF为6.4 V,差分Ron为28 mΩ-cm2。证明了温度不敏感的导态特性。采用140 μm漂移层和5 μm场停止缓冲层的8.4 mm × 8.4 mm器件,在电源电压为8 kV时进行了开关测量,在25°C下测量了720 ns的关断时间和5.4 mJ的关断损耗。结果表明,通过改变场阻缓冲层的厚度,可以控制从背面注入的电荷。采用4H-SiC N-IGBT,实现了工作频率为5khz、55kw、1.7 kV至7kv的升压变换器,效率值为97.8%。
A 1 cm × 1 cm 4H-SiC N-IGBT exhibited a blocking voltage of 20.7 kV with a leakage current of 140 μA, which represents the highest blocking voltage reported from an MOS semiconductor power switching device to date. The device showed a VF of 6.4 V at an IC of 20 A, and a differential Ron,sp of 28 mΩ-cm2. Temperature insensitive on-state characteristics were demonstrated. Switching measurements with a supply voltage of 8 kV were performed, and a turn-off time of 720 ns and a turn-off loss of 5.4 mJ were measured at 25°C, for a 8.4 mm × 8.4 mm device with 140 μm drift layer and 5 μm Field Stop buffer layer. It was demonstrated that the charge injection from the backside can be controlled by varying the thickness of the Field-Stop buffer layer. A 55 kW, 1.7 kV to 7 kV boost converter operating at 5 kHz was demonstrated using the 4H-SiC N-IGBT, and an efficiency value of 97.8% was reported.