大模型研究进展与理论基础综述

Dong Xiaofei, Zhang Xueqiang, Zhang Dan, Cao Feng, Bai Bingfeng
{"title":"大模型研究进展与理论基础综述","authors":"Dong Xiaofei, Zhang Xueqiang, Zhang Dan, Cao Feng, Bai Bingfeng","doi":"10.1109/ccis57298.2022.10016400","DOIUrl":null,"url":null,"abstract":"In recent years, with the rapid development of key elements and core technologies of artificial intelligence, large-scale pre-training model (large model) has achieved remarkable effects. As specific practice progresses of large model, it is useful to realize the universality and generalizability of artificial intelligence, and respond to the strategic goal of building a strong model framework. From the perspective of theory, this article explores the support points of large model in the theories of intrinsic subspace, effective model complexity, and low rank decomposition. We discuss the research findings, implications and limitations of model development, and puts forward relevant suggestions for the future trend.","PeriodicalId":374660,"journal":{"name":"2022 IEEE 8th International Conference on Cloud Computing and Intelligent Systems (CCIS)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Survey of Research Progress and Theory Foundation in Large Model\",\"authors\":\"Dong Xiaofei, Zhang Xueqiang, Zhang Dan, Cao Feng, Bai Bingfeng\",\"doi\":\"10.1109/ccis57298.2022.10016400\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, with the rapid development of key elements and core technologies of artificial intelligence, large-scale pre-training model (large model) has achieved remarkable effects. As specific practice progresses of large model, it is useful to realize the universality and generalizability of artificial intelligence, and respond to the strategic goal of building a strong model framework. From the perspective of theory, this article explores the support points of large model in the theories of intrinsic subspace, effective model complexity, and low rank decomposition. We discuss the research findings, implications and limitations of model development, and puts forward relevant suggestions for the future trend.\",\"PeriodicalId\":374660,\"journal\":{\"name\":\"2022 IEEE 8th International Conference on Cloud Computing and Intelligent Systems (CCIS)\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 8th International Conference on Cloud Computing and Intelligent Systems (CCIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ccis57298.2022.10016400\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 8th International Conference on Cloud Computing and Intelligent Systems (CCIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ccis57298.2022.10016400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,随着人工智能关键要素和核心技术的快速发展,大规模预训练模型(large model)取得了显著的效果。随着大模型具体实践的推进,有助于实现人工智能的通用性和泛化性,响应构建强模型框架的战略目标。本文从理论的角度探讨了大模型的内在子空间理论、有效模型复杂度理论和低秩分解理论的支撑点。讨论了模型发展的研究成果、启示和局限性,并对未来发展趋势提出了相关建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Survey of Research Progress and Theory Foundation in Large Model
In recent years, with the rapid development of key elements and core technologies of artificial intelligence, large-scale pre-training model (large model) has achieved remarkable effects. As specific practice progresses of large model, it is useful to realize the universality and generalizability of artificial intelligence, and respond to the strategic goal of building a strong model framework. From the perspective of theory, this article explores the support points of large model in the theories of intrinsic subspace, effective model complexity, and low rank decomposition. We discuss the research findings, implications and limitations of model development, and puts forward relevant suggestions for the future trend.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信