{"title":"PowerNet:基于最大卷积神经网络的可转移动态红外降估计","authors":"Zhiyao Xie, Haoxing Ren, Brucek Khailany, Ye Sheng, Santosh Santosh, Jiang Hu, Yiran Chen","doi":"10.1109/ASP-DAC47756.2020.9045574","DOIUrl":null,"url":null,"abstract":"IR drop is a fundamental constraint required by almost all chip designs. However, its evaluation usually takes a long time that hinders mitigation techniques for fixing its violations. In this work, we develop a fast dynamic IR drop estimation technique, named PowerNet, based on a convolutional neural network (CNN). It can handle both vector-based and vectorless IR analyses. Moreover, the proposed CNN model is general and transferable to different designs. This is in contrast to most existing machine learning (ML) approaches, where a model is applicable only to a specific design. Experimental results show that PowerNet outperforms the latest ML method by 9% in accuracy for the challenging case of vectorless IR drop and achieves a 30× speedup compared to an accurate IR drop commercial tool. Further, a mitigation tool guided by PowerNet reduces IR drop hotspots by 26% and 31% on two industrial designs, respectively, with very limited modification on their power grids.","PeriodicalId":125112,"journal":{"name":"2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"PowerNet: Transferable Dynamic IR Drop Estimation via Maximum Convolutional Neural Network\",\"authors\":\"Zhiyao Xie, Haoxing Ren, Brucek Khailany, Ye Sheng, Santosh Santosh, Jiang Hu, Yiran Chen\",\"doi\":\"10.1109/ASP-DAC47756.2020.9045574\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"IR drop is a fundamental constraint required by almost all chip designs. However, its evaluation usually takes a long time that hinders mitigation techniques for fixing its violations. In this work, we develop a fast dynamic IR drop estimation technique, named PowerNet, based on a convolutional neural network (CNN). It can handle both vector-based and vectorless IR analyses. Moreover, the proposed CNN model is general and transferable to different designs. This is in contrast to most existing machine learning (ML) approaches, where a model is applicable only to a specific design. Experimental results show that PowerNet outperforms the latest ML method by 9% in accuracy for the challenging case of vectorless IR drop and achieves a 30× speedup compared to an accurate IR drop commercial tool. Further, a mitigation tool guided by PowerNet reduces IR drop hotspots by 26% and 31% on two industrial designs, respectively, with very limited modification on their power grids.\",\"PeriodicalId\":125112,\"journal\":{\"name\":\"2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASP-DAC47756.2020.9045574\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASP-DAC47756.2020.9045574","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
PowerNet: Transferable Dynamic IR Drop Estimation via Maximum Convolutional Neural Network
IR drop is a fundamental constraint required by almost all chip designs. However, its evaluation usually takes a long time that hinders mitigation techniques for fixing its violations. In this work, we develop a fast dynamic IR drop estimation technique, named PowerNet, based on a convolutional neural network (CNN). It can handle both vector-based and vectorless IR analyses. Moreover, the proposed CNN model is general and transferable to different designs. This is in contrast to most existing machine learning (ML) approaches, where a model is applicable only to a specific design. Experimental results show that PowerNet outperforms the latest ML method by 9% in accuracy for the challenging case of vectorless IR drop and achieves a 30× speedup compared to an accurate IR drop commercial tool. Further, a mitigation tool guided by PowerNet reduces IR drop hotspots by 26% and 31% on two industrial designs, respectively, with very limited modification on their power grids.