基于支持向量机的隧道内多缺陷自动分类算法

L. Xiang, Huilin Zhou, Si-hao Tan
{"title":"基于支持向量机的隧道内多缺陷自动分类算法","authors":"L. Xiang, Huilin Zhou, Si-hao Tan","doi":"10.1109/ICGPR.2012.6254908","DOIUrl":null,"url":null,"abstract":"An integrated framework is presented in this paper to automatically achieve rebar detection and defection classification inside tunnel. This framework is composed of GPR return preprocessing to perform clutter reduction, a Frequency-wavenumber migration algorithm to focus the hyperbola, an energy scanning method to extract the region of interest(ROI) and to achieve rebar detection, and a multi-class support vector machine(SVM)to classify various types of defection inside tunnel. The experimental results based on simulated data show that the presented framework can automatically and effectively perform rebar detection and defection classification.","PeriodicalId":443640,"journal":{"name":"2012 14th International Conference on Ground Penetrating Radar (GPR)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An automatic algorithm for multi-defect classification inside tunnel using SVM\",\"authors\":\"L. Xiang, Huilin Zhou, Si-hao Tan\",\"doi\":\"10.1109/ICGPR.2012.6254908\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An integrated framework is presented in this paper to automatically achieve rebar detection and defection classification inside tunnel. This framework is composed of GPR return preprocessing to perform clutter reduction, a Frequency-wavenumber migration algorithm to focus the hyperbola, an energy scanning method to extract the region of interest(ROI) and to achieve rebar detection, and a multi-class support vector machine(SVM)to classify various types of defection inside tunnel. The experimental results based on simulated data show that the presented framework can automatically and effectively perform rebar detection and defection classification.\",\"PeriodicalId\":443640,\"journal\":{\"name\":\"2012 14th International Conference on Ground Penetrating Radar (GPR)\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 14th International Conference on Ground Penetrating Radar (GPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICGPR.2012.6254908\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 14th International Conference on Ground Penetrating Radar (GPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICGPR.2012.6254908","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种自动实现隧道内钢筋检测与缺陷分类的集成框架。该框架由探地雷达回波预处理实现杂波抑制、频率-波数偏移算法实现双曲线聚焦、能量扫描提取感兴趣区域实现钢筋检测和多类支持向量机对隧道内各种类型的缺陷进行分类组成。基于仿真数据的实验结果表明,该框架能够自动有效地进行钢筋检测和缺陷分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An automatic algorithm for multi-defect classification inside tunnel using SVM
An integrated framework is presented in this paper to automatically achieve rebar detection and defection classification inside tunnel. This framework is composed of GPR return preprocessing to perform clutter reduction, a Frequency-wavenumber migration algorithm to focus the hyperbola, an energy scanning method to extract the region of interest(ROI) and to achieve rebar detection, and a multi-class support vector machine(SVM)to classify various types of defection inside tunnel. The experimental results based on simulated data show that the presented framework can automatically and effectively perform rebar detection and defection classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信