PEVD算法中parhermite矩阵操作的内存和复杂度降低

Fraser K. Coutts, J. Corr, K. Thompson, Stephan Weiss, I. Proudler, J. McWhirter
{"title":"PEVD算法中parhermite矩阵操作的内存和复杂度降低","authors":"Fraser K. Coutts, J. Corr, K. Thompson, Stephan Weiss, I. Proudler, J. McWhirter","doi":"10.1109/EUSIPCO.2016.7760525","DOIUrl":null,"url":null,"abstract":"A number of algorithms for the iterative calculation of a polynomial matrix eigenvalue decomposition (PEVD) have been introduced. The PEVD is a generalisation of the ordinary EVD and will diagonalise a parahermitian matrix via paraunitary operations. This paper addresses savings - both computationally and in terms of memory use - that exploit the parahermitian structure of the matrix being decomposed, and also suggests an implicit trimming approach to efficiently curb the polynomial order growth usually observed during iterations of the PEVD algorithms. We demonstrate that with the proposed techniques, both storage and computations can be significantly reduced, impacting on a number of broadband multichannel problems.","PeriodicalId":127068,"journal":{"name":"2016 24th European Signal Processing Conference (EUSIPCO)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Memory and complexity reduction in parahermitian matrix manipulations of PEVD algorithms\",\"authors\":\"Fraser K. Coutts, J. Corr, K. Thompson, Stephan Weiss, I. Proudler, J. McWhirter\",\"doi\":\"10.1109/EUSIPCO.2016.7760525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A number of algorithms for the iterative calculation of a polynomial matrix eigenvalue decomposition (PEVD) have been introduced. The PEVD is a generalisation of the ordinary EVD and will diagonalise a parahermitian matrix via paraunitary operations. This paper addresses savings - both computationally and in terms of memory use - that exploit the parahermitian structure of the matrix being decomposed, and also suggests an implicit trimming approach to efficiently curb the polynomial order growth usually observed during iterations of the PEVD algorithms. We demonstrate that with the proposed techniques, both storage and computations can be significantly reduced, impacting on a number of broadband multichannel problems.\",\"PeriodicalId\":127068,\"journal\":{\"name\":\"2016 24th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 24th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUSIPCO.2016.7760525\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 24th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUSIPCO.2016.7760525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

介绍了多项式矩阵特征值分解(PEVD)迭代计算的几种算法。PEVD是普通EVD的推广,并将通过准体运算对角化一个准体矩阵。本文讨论了利用被分解矩阵的parparhertian结构的节省-计算和内存使用方面-并且还提出了一种隐式修剪方法来有效地抑制通常在PEVD算法迭代期间观察到的多项式阶增长。我们证明,使用所提出的技术,存储和计算都可以显着减少,影响了许多宽带多通道问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Memory and complexity reduction in parahermitian matrix manipulations of PEVD algorithms
A number of algorithms for the iterative calculation of a polynomial matrix eigenvalue decomposition (PEVD) have been introduced. The PEVD is a generalisation of the ordinary EVD and will diagonalise a parahermitian matrix via paraunitary operations. This paper addresses savings - both computationally and in terms of memory use - that exploit the parahermitian structure of the matrix being decomposed, and also suggests an implicit trimming approach to efficiently curb the polynomial order growth usually observed during iterations of the PEVD algorithms. We demonstrate that with the proposed techniques, both storage and computations can be significantly reduced, impacting on a number of broadband multichannel problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信