具有比例时滞的脉冲复值神经网络的全局指数稳定性

Zhenjiang Zhao, Q. Song
{"title":"具有比例时滞的脉冲复值神经网络的全局指数稳定性","authors":"Zhenjiang Zhao, Q. Song","doi":"10.1109/AIAIM.2019.8632781","DOIUrl":null,"url":null,"abstract":"In this thesis, stability for a class of impulsive complex-valued neural networks with proportional time delay is discussed. By adhibiting an advisable vector Lyapunov function, making use of inequality craftsmanship and M-matrix theory, a sufficient condition is educed to insure the global exponential stability of the considered neural networks.","PeriodicalId":179068,"journal":{"name":"2019 China-Qatar International Workshop on Artificial Intelligence and Applications to Intelligent Manufacturing (AIAIM)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Global Exponential Stability of Impulsive Complex-Valued Neural Networks with Proportional Delays\",\"authors\":\"Zhenjiang Zhao, Q. Song\",\"doi\":\"10.1109/AIAIM.2019.8632781\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this thesis, stability for a class of impulsive complex-valued neural networks with proportional time delay is discussed. By adhibiting an advisable vector Lyapunov function, making use of inequality craftsmanship and M-matrix theory, a sufficient condition is educed to insure the global exponential stability of the considered neural networks.\",\"PeriodicalId\":179068,\"journal\":{\"name\":\"2019 China-Qatar International Workshop on Artificial Intelligence and Applications to Intelligent Manufacturing (AIAIM)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 China-Qatar International Workshop on Artificial Intelligence and Applications to Intelligent Manufacturing (AIAIM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIAIM.2019.8632781\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 China-Qatar International Workshop on Artificial Intelligence and Applications to Intelligent Manufacturing (AIAIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIAIM.2019.8632781","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文讨论了一类具有比例时滞的脉冲复值神经网络的稳定性问题。通过选择一个合适的向量Lyapunov函数,利用不等式技巧和m矩阵理论,导出了神经网络全局指数稳定的充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global Exponential Stability of Impulsive Complex-Valued Neural Networks with Proportional Delays
In this thesis, stability for a class of impulsive complex-valued neural networks with proportional time delay is discussed. By adhibiting an advisable vector Lyapunov function, making use of inequality craftsmanship and M-matrix theory, a sufficient condition is educed to insure the global exponential stability of the considered neural networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信