在非结构化环境中实现最后一英里自动驾驶的精确自我定位

Paul Czerwionka, Fabian Pucks, Hans Harte, R. Blaschek, Robert Treiber, Ahmed Hussein
{"title":"在非结构化环境中实现最后一英里自动驾驶的精确自我定位","authors":"Paul Czerwionka, Fabian Pucks, Hans Harte, R. Blaschek, Robert Treiber, Ahmed Hussein","doi":"10.1109/ivworkshops54471.2021.9669233","DOIUrl":null,"url":null,"abstract":"In the research on last mile automated driving, self-localization is an important problem to solve. In this paper, a precise self-localization algorithm is presented, which is based on a given map using LiDAR and camera sensors. The proposed approach is used as a solution for the localization problem within the VanAssist project. Several experiments were carriedout in order to validate the work and compare it to a reference and accurate RTK-GPS data. The evaluation shows that the localization result is within the requirements for last mile automated driving. Moreover, it indicates that the solution is robust to handle limitation in comparison to other approaches in the literature.","PeriodicalId":256905,"journal":{"name":"2021 IEEE Intelligent Vehicles Symposium Workshops (IV Workshops)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Precise self-localization for last mile delivery automated driving in unstructured environments\",\"authors\":\"Paul Czerwionka, Fabian Pucks, Hans Harte, R. Blaschek, Robert Treiber, Ahmed Hussein\",\"doi\":\"10.1109/ivworkshops54471.2021.9669233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the research on last mile automated driving, self-localization is an important problem to solve. In this paper, a precise self-localization algorithm is presented, which is based on a given map using LiDAR and camera sensors. The proposed approach is used as a solution for the localization problem within the VanAssist project. Several experiments were carriedout in order to validate the work and compare it to a reference and accurate RTK-GPS data. The evaluation shows that the localization result is within the requirements for last mile automated driving. Moreover, it indicates that the solution is robust to handle limitation in comparison to other approaches in the literature.\",\"PeriodicalId\":256905,\"journal\":{\"name\":\"2021 IEEE Intelligent Vehicles Symposium Workshops (IV Workshops)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Intelligent Vehicles Symposium Workshops (IV Workshops)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ivworkshops54471.2021.9669233\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Intelligent Vehicles Symposium Workshops (IV Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ivworkshops54471.2021.9669233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在最后一公里自动驾驶研究中,自定位是一个重要的问题。本文提出了一种基于给定地图的激光雷达和相机传感器的精确自定位算法。提出的方法被用作VanAssist项目中本地化问题的解决方案。为了验证该工作,并将其与参考和精确的RTK-GPS数据进行了比较。评估结果表明,定位结果在最后一英里自动驾驶的要求范围内。此外,与文献中的其他方法相比,该解决方案在处理限制方面具有鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Precise self-localization for last mile delivery automated driving in unstructured environments
In the research on last mile automated driving, self-localization is an important problem to solve. In this paper, a precise self-localization algorithm is presented, which is based on a given map using LiDAR and camera sensors. The proposed approach is used as a solution for the localization problem within the VanAssist project. Several experiments were carriedout in order to validate the work and compare it to a reference and accurate RTK-GPS data. The evaluation shows that the localization result is within the requirements for last mile automated driving. Moreover, it indicates that the solution is robust to handle limitation in comparison to other approaches in the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信