基于签名补丁、微配准和稀疏表示的光学文本识别新框架

R. F. Moghaddam, F. F. Moghaddam, M. Cheriet
{"title":"基于签名补丁、微配准和稀疏表示的光学文本识别新框架","authors":"R. F. Moghaddam, F. F. Moghaddam, M. Cheriet","doi":"10.1109/ISSPA.2012.6310485","DOIUrl":null,"url":null,"abstract":"A framework for development of segmentation-free optical recognizers of ancient manuscripts, which work free from line, word, and character segmentation, is proposed. The framework introduces a new representation of visual text using the concept of signature patches. These patches which are free from traditional guidelines of text, such as the baseline, are registered to each other using a microscale registration method based on the estimation of the active regions using a multilevel classifier, the directional map. Then, an one-dimensional feature vector is extracted from the registered signature patches, named spiral features. The incremental learning process is performed using a sparse representation using a dictionary of spiral feature atoms. The framework is applied to the George Washington database with promising results.","PeriodicalId":248763,"journal":{"name":"2012 11th International Conference on Information Science, Signal Processing and their Applications (ISSPA)","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A new framework based on signature patches, micro registration, and sparse representation for optical text recognition\",\"authors\":\"R. F. Moghaddam, F. F. Moghaddam, M. Cheriet\",\"doi\":\"10.1109/ISSPA.2012.6310485\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A framework for development of segmentation-free optical recognizers of ancient manuscripts, which work free from line, word, and character segmentation, is proposed. The framework introduces a new representation of visual text using the concept of signature patches. These patches which are free from traditional guidelines of text, such as the baseline, are registered to each other using a microscale registration method based on the estimation of the active regions using a multilevel classifier, the directional map. Then, an one-dimensional feature vector is extracted from the registered signature patches, named spiral features. The incremental learning process is performed using a sparse representation using a dictionary of spiral feature atoms. The framework is applied to the George Washington database with promising results.\",\"PeriodicalId\":248763,\"journal\":{\"name\":\"2012 11th International Conference on Information Science, Signal Processing and their Applications (ISSPA)\",\"volume\":\"85 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 11th International Conference on Information Science, Signal Processing and their Applications (ISSPA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSPA.2012.6310485\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 11th International Conference on Information Science, Signal Processing and their Applications (ISSPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPA.2012.6310485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

提出了一种不需要行、字、字分割的古代手抄本无分割光学识别器的开发框架。该框架使用签名补丁的概念引入了一种新的视觉文本表示。这些不受传统文本指南(如基线)约束的补丁,使用基于多级分类器(方向图)估计活动区域的微尺度配准方法相互配准。然后,从注册的特征补丁中提取一维特征向量,称为螺旋特征;增量学习过程使用使用螺旋特征原子字典的稀疏表示来执行。将该框架应用于乔治华盛顿数据库,取得了令人满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new framework based on signature patches, micro registration, and sparse representation for optical text recognition
A framework for development of segmentation-free optical recognizers of ancient manuscripts, which work free from line, word, and character segmentation, is proposed. The framework introduces a new representation of visual text using the concept of signature patches. These patches which are free from traditional guidelines of text, such as the baseline, are registered to each other using a microscale registration method based on the estimation of the active regions using a multilevel classifier, the directional map. Then, an one-dimensional feature vector is extracted from the registered signature patches, named spiral features. The incremental learning process is performed using a sparse representation using a dictionary of spiral feature atoms. The framework is applied to the George Washington database with promising results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信