MC/sup */:用于移动立方体的星形函数

G. Nielson
{"title":"MC/sup */:用于移动立方体的星形函数","authors":"G. Nielson","doi":"10.1109/VISUAL.2003.1250355","DOIUrl":null,"url":null,"abstract":"We describe a modification of the widely used marching cubes method that leads to the useful property that the resulting isosurfaces are locally single valued functions. This implies that conventional interpolation and approximation methods can be used to locally represent the surface. These representations can be used for computing approximations for local surface properties. We utilize this possibility in order to develop algorithms for locally approximating Gaussian and mean curvature, methods for constrained smoothing of isosurface, and techniques for the parameterization of isosurfaces.","PeriodicalId":372131,"journal":{"name":"IEEE Visualization, 2003. VIS 2003.","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"MC/sup */: star functions for marching cubes\",\"authors\":\"G. Nielson\",\"doi\":\"10.1109/VISUAL.2003.1250355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe a modification of the widely used marching cubes method that leads to the useful property that the resulting isosurfaces are locally single valued functions. This implies that conventional interpolation and approximation methods can be used to locally represent the surface. These representations can be used for computing approximations for local surface properties. We utilize this possibility in order to develop algorithms for locally approximating Gaussian and mean curvature, methods for constrained smoothing of isosurface, and techniques for the parameterization of isosurfaces.\",\"PeriodicalId\":372131,\"journal\":{\"name\":\"IEEE Visualization, 2003. VIS 2003.\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Visualization, 2003. VIS 2003.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VISUAL.2003.1250355\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Visualization, 2003. VIS 2003.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VISUAL.2003.1250355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

我们描述了对广泛使用的行进立方体方法的一种修改,它导致了所得等值面是局部单值函数的有用性质。这意味着可以使用传统的插值和近似方法来局部表示曲面。这些表示可用于计算局部表面性质的近似值。我们利用这种可能性来开发局部逼近高斯曲率和平均曲率的算法,等值面的约束平滑方法以及等值面的参数化技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MC/sup */: star functions for marching cubes
We describe a modification of the widely used marching cubes method that leads to the useful property that the resulting isosurfaces are locally single valued functions. This implies that conventional interpolation and approximation methods can be used to locally represent the surface. These representations can be used for computing approximations for local surface properties. We utilize this possibility in order to develop algorithms for locally approximating Gaussian and mean curvature, methods for constrained smoothing of isosurface, and techniques for the parameterization of isosurfaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信