无线传感器网络中移动地标定位路径规划

Dimitrios Koutsonikolas, Saumitra M. Das, Y. C. Hu
{"title":"无线传感器网络中移动地标定位路径规划","authors":"Dimitrios Koutsonikolas, Saumitra M. Das, Y. C. Hu","doi":"10.1109/ICDCSW.2006.82","DOIUrl":null,"url":null,"abstract":"Many applications of wireless sensor networks require the sensor nodes to obtain their locations. The main idea in most localization methods has been that some nodes with known coordinates (e.g., GPS-equipped nodes) transmit beacons with their coordinates in order to help other nodes to localize themselves. A promising method that significantly reduces the deployment cost is to replace the set of statically deployed GPS-enhanced sensors with one mobile landmark equipped with a GPS unit. In this case, a fundamental research issue is the planning of the path that the mobile landmark should travel along in order to minimize the localization error. In this paper we first study the localization error of three different trajectories for the mobile landmark, namely SCAN, DOUBLE SCAN, and HILBERT. We further study the tradeoffs between the trajectory resolution and the localization accuracy in the presence of 2-hop localization, in which sensors that have already obtained an estimate of their positions help to localize other sensors. Our trajectories are practical and can be easily implemented in mobile robot platforms.","PeriodicalId":333505,"journal":{"name":"26th IEEE International Conference on Distributed Computing Systems Workshops (ICDCSW'06)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Path Planning of Mobile Landmarks for Localization inWireless Sensor Networks\",\"authors\":\"Dimitrios Koutsonikolas, Saumitra M. Das, Y. C. Hu\",\"doi\":\"10.1109/ICDCSW.2006.82\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many applications of wireless sensor networks require the sensor nodes to obtain their locations. The main idea in most localization methods has been that some nodes with known coordinates (e.g., GPS-equipped nodes) transmit beacons with their coordinates in order to help other nodes to localize themselves. A promising method that significantly reduces the deployment cost is to replace the set of statically deployed GPS-enhanced sensors with one mobile landmark equipped with a GPS unit. In this case, a fundamental research issue is the planning of the path that the mobile landmark should travel along in order to minimize the localization error. In this paper we first study the localization error of three different trajectories for the mobile landmark, namely SCAN, DOUBLE SCAN, and HILBERT. We further study the tradeoffs between the trajectory resolution and the localization accuracy in the presence of 2-hop localization, in which sensors that have already obtained an estimate of their positions help to localize other sensors. Our trajectories are practical and can be easily implemented in mobile robot platforms.\",\"PeriodicalId\":333505,\"journal\":{\"name\":\"26th IEEE International Conference on Distributed Computing Systems Workshops (ICDCSW'06)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"26th IEEE International Conference on Distributed Computing Systems Workshops (ICDCSW'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDCSW.2006.82\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"26th IEEE International Conference on Distributed Computing Systems Workshops (ICDCSW'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCSW.2006.82","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

无线传感器网络的许多应用都需要传感器节点获取它们的位置。大多数定位方法的主要思想是,一些具有已知坐标的节点(例如,配备gps的节点)发送带有其坐标的信标,以帮助其他节点进行自我定位。一种显著降低部署成本的有前途的方法是将一组静态部署的GPS增强传感器替换为一个配备GPS单元的移动地标。在这种情况下,一个基本的研究问题是规划移动地标应该沿着的路径,以尽量减少定位误差。本文首先研究了SCAN、DOUBLE SCAN和HILBERT三种不同轨迹对移动地标的定位误差。我们进一步研究了在2跳定位下轨迹分辨率和定位精度之间的权衡,其中已经获得其位置估计的传感器有助于定位其他传感器。我们的轨迹是实用的,可以很容易地在移动机器人平台上实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Path Planning of Mobile Landmarks for Localization inWireless Sensor Networks
Many applications of wireless sensor networks require the sensor nodes to obtain their locations. The main idea in most localization methods has been that some nodes with known coordinates (e.g., GPS-equipped nodes) transmit beacons with their coordinates in order to help other nodes to localize themselves. A promising method that significantly reduces the deployment cost is to replace the set of statically deployed GPS-enhanced sensors with one mobile landmark equipped with a GPS unit. In this case, a fundamental research issue is the planning of the path that the mobile landmark should travel along in order to minimize the localization error. In this paper we first study the localization error of three different trajectories for the mobile landmark, namely SCAN, DOUBLE SCAN, and HILBERT. We further study the tradeoffs between the trajectory resolution and the localization accuracy in the presence of 2-hop localization, in which sensors that have already obtained an estimate of their positions help to localize other sensors. Our trajectories are practical and can be easily implemented in mobile robot platforms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信