用模糊c均值聚类改进Parzen密度估计的泛化

Jing Zhou, Yushi Yang, Yajing Zhang
{"title":"用模糊c均值聚类改进Parzen密度估计的泛化","authors":"Jing Zhou, Yushi Yang, Yajing Zhang","doi":"10.1109/ICSESS.2012.6269406","DOIUrl":null,"url":null,"abstract":"Using fuzzy c-means clustering procedure to find a condensed set for Parzen windows estimation (ParzenFCMC) is proposed in this paper. The full Parzen windows estimator usually requires more computation and storage. However, the experimental simulations show that the significant increase of reference data may not improve the estimation performance of Parzen windows method obviously. In addition, the theoretical analysis validates the traditional Parzen windows estimator is sensitive to noise data. Thus, in order to improve the generalization capability (i.e., the adaptability to nosie data) of Parzen windows estimation, we try to find a condensed dataset to conduct the probability density estimation by adopting the following measures: 1) clustering the original dataset by using fuzzy c-means; 2) estimating the underlying density function based on the condensed reference set. Finally, the experimental results on the synthetic datasets obeying Uniform, Normal, Exponential, and Rayleigh distributions show the usefulness and effectiveness of proposed ParzenFCMC. The significant savings on computation and storage can be achieved with only minimal mean integrated squared error (MISE) degradation.","PeriodicalId":205738,"journal":{"name":"2012 IEEE International Conference on Computer Science and Automation Engineering","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Improving generalization of Parzen density estimation by fuzzy c-means clustering\",\"authors\":\"Jing Zhou, Yushi Yang, Yajing Zhang\",\"doi\":\"10.1109/ICSESS.2012.6269406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using fuzzy c-means clustering procedure to find a condensed set for Parzen windows estimation (ParzenFCMC) is proposed in this paper. The full Parzen windows estimator usually requires more computation and storage. However, the experimental simulations show that the significant increase of reference data may not improve the estimation performance of Parzen windows method obviously. In addition, the theoretical analysis validates the traditional Parzen windows estimator is sensitive to noise data. Thus, in order to improve the generalization capability (i.e., the adaptability to nosie data) of Parzen windows estimation, we try to find a condensed dataset to conduct the probability density estimation by adopting the following measures: 1) clustering the original dataset by using fuzzy c-means; 2) estimating the underlying density function based on the condensed reference set. Finally, the experimental results on the synthetic datasets obeying Uniform, Normal, Exponential, and Rayleigh distributions show the usefulness and effectiveness of proposed ParzenFCMC. The significant savings on computation and storage can be achieved with only minimal mean integrated squared error (MISE) degradation.\",\"PeriodicalId\":205738,\"journal\":{\"name\":\"2012 IEEE International Conference on Computer Science and Automation Engineering\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Computer Science and Automation Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSESS.2012.6269406\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Computer Science and Automation Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSESS.2012.6269406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了用模糊c均值聚类方法寻找Parzen窗口估计的压缩集(ParzenFCMC)。完整的Parzen窗口估计器通常需要更多的计算和存储。然而,实验模拟表明,参考数据的显著增加并不会明显提高Parzen窗方法的估计性能。此外,理论分析还验证了传统的Parzen窗估计器对噪声数据的敏感性。因此,为了提高Parzen窗估计的泛化能力(即对噪声数据的适应性),我们尝试找到一个精简的数据集进行概率密度估计,采用以下措施:1)使用模糊c-means对原始数据集进行聚类;2)基于压缩参考集估计底层密度函数。最后,在服从均匀分布、正态分布、指数分布和瑞利分布的合成数据集上的实验结果表明了所提出的ParzenFCMC的实用性和有效性。计算和存储的显著节省可以实现只有最小的平均积分平方误差(MISE)退化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving generalization of Parzen density estimation by fuzzy c-means clustering
Using fuzzy c-means clustering procedure to find a condensed set for Parzen windows estimation (ParzenFCMC) is proposed in this paper. The full Parzen windows estimator usually requires more computation and storage. However, the experimental simulations show that the significant increase of reference data may not improve the estimation performance of Parzen windows method obviously. In addition, the theoretical analysis validates the traditional Parzen windows estimator is sensitive to noise data. Thus, in order to improve the generalization capability (i.e., the adaptability to nosie data) of Parzen windows estimation, we try to find a condensed dataset to conduct the probability density estimation by adopting the following measures: 1) clustering the original dataset by using fuzzy c-means; 2) estimating the underlying density function based on the condensed reference set. Finally, the experimental results on the synthetic datasets obeying Uniform, Normal, Exponential, and Rayleigh distributions show the usefulness and effectiveness of proposed ParzenFCMC. The significant savings on computation and storage can be achieved with only minimal mean integrated squared error (MISE) degradation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信