动态稳定机器人的人类控制策略学习:支持向量机方法

Y. Ou, Yangsheng Xu
{"title":"动态稳定机器人的人类控制策略学习:支持向量机方法","authors":"Y. Ou, Yangsheng Xu","doi":"10.1109/ROBOT.2003.1242124","DOIUrl":null,"url":null,"abstract":"In this paper, we discuss the problem of how human control strategy can be represented as a parametric model using a Support Vector Machine (SVM), and how an SVM-based controller can be used to effectively control a dynamically stable system. We formulate the learning problem as a support vector regression and develop a new SVM learning structure to better implement human control strategy learning in control. The approach is fundamentally valuable in dealing with problems that normally dynamically stable robots experience, such as small sample data and local minima, and therefore is extremely useful in abstracting human controller for dynamic systems. The experimental study on the SVM approach with respect to other approaches clearly demonstrated the superiority of the SVM approach in terms of fidelity, efficiency and effectiveness in implementation.","PeriodicalId":315346,"journal":{"name":"2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Learning human control strategy for dynamically stable robots: support vector machine approach\",\"authors\":\"Y. Ou, Yangsheng Xu\",\"doi\":\"10.1109/ROBOT.2003.1242124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we discuss the problem of how human control strategy can be represented as a parametric model using a Support Vector Machine (SVM), and how an SVM-based controller can be used to effectively control a dynamically stable system. We formulate the learning problem as a support vector regression and develop a new SVM learning structure to better implement human control strategy learning in control. The approach is fundamentally valuable in dealing with problems that normally dynamically stable robots experience, such as small sample data and local minima, and therefore is extremely useful in abstracting human controller for dynamic systems. The experimental study on the SVM approach with respect to other approaches clearly demonstrated the superiority of the SVM approach in terms of fidelity, efficiency and effectiveness in implementation.\",\"PeriodicalId\":315346,\"journal\":{\"name\":\"2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBOT.2003.1242124\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBOT.2003.1242124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文讨论了如何使用支持向量机(SVM)将人类控制策略表示为参数模型,以及如何使用基于支持向量机的控制器有效地控制动态稳定系统的问题。我们将学习问题表述为支持向量回归,并开发了一种新的支持向量机学习结构,以更好地实现控制中的人类控制策略学习。该方法在处理通常动态稳定的机器人所经历的问题(如小样本数据和局部极小值)方面具有根本价值,因此在抽象动态系统的人类控制器方面非常有用。通过对SVM方法相对于其他方法的实验研究,清楚地证明了SVM方法在保真度、效率和实现效果方面的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning human control strategy for dynamically stable robots: support vector machine approach
In this paper, we discuss the problem of how human control strategy can be represented as a parametric model using a Support Vector Machine (SVM), and how an SVM-based controller can be used to effectively control a dynamically stable system. We formulate the learning problem as a support vector regression and develop a new SVM learning structure to better implement human control strategy learning in control. The approach is fundamentally valuable in dealing with problems that normally dynamically stable robots experience, such as small sample data and local minima, and therefore is extremely useful in abstracting human controller for dynamic systems. The experimental study on the SVM approach with respect to other approaches clearly demonstrated the superiority of the SVM approach in terms of fidelity, efficiency and effectiveness in implementation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信