M. Edamoto, Y. Suzuki, N. Kasagi, K. Kashiwagi, Y. Morizawa, T. Yokoyama, T. Seki, M. Oba
{"title":"用于能量收集的低谐振频率微型驻极体发生器","authors":"M. Edamoto, Y. Suzuki, N. Kasagi, K. Kashiwagi, Y. Morizawa, T. Yokoyama, T. Seki, M. Oba","doi":"10.1109/MEMSYS.2009.4805569","DOIUrl":null,"url":null,"abstract":"A vibration-driven electret generator has been developed for energy harvesting applications. By using parylene as the spring material, a low-resonant-frequency MEMS generator is realized. Electrostatic levitation is adopted for the gap control. Large in-plane amplitude of 0.5 mm at the resonant frequency as low as 21 Hz has been achieved. We also demonstrate electret-powered operation of LED using a low-power-consumption impedance conversion circuit.","PeriodicalId":187850,"journal":{"name":"2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems","volume":"72 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"61","resultStr":"{\"title\":\"Low-Resonant-Frequency Micro Electret Generator for Energy Harvesting Application\",\"authors\":\"M. Edamoto, Y. Suzuki, N. Kasagi, K. Kashiwagi, Y. Morizawa, T. Yokoyama, T. Seki, M. Oba\",\"doi\":\"10.1109/MEMSYS.2009.4805569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A vibration-driven electret generator has been developed for energy harvesting applications. By using parylene as the spring material, a low-resonant-frequency MEMS generator is realized. Electrostatic levitation is adopted for the gap control. Large in-plane amplitude of 0.5 mm at the resonant frequency as low as 21 Hz has been achieved. We also demonstrate electret-powered operation of LED using a low-power-consumption impedance conversion circuit.\",\"PeriodicalId\":187850,\"journal\":{\"name\":\"2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems\",\"volume\":\"72 5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"61\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEMSYS.2009.4805569\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2009.4805569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Low-Resonant-Frequency Micro Electret Generator for Energy Harvesting Application
A vibration-driven electret generator has been developed for energy harvesting applications. By using parylene as the spring material, a low-resonant-frequency MEMS generator is realized. Electrostatic levitation is adopted for the gap control. Large in-plane amplitude of 0.5 mm at the resonant frequency as low as 21 Hz has been achieved. We also demonstrate electret-powered operation of LED using a low-power-consumption impedance conversion circuit.