驱动遗传算法的模糊方法

Krzysztof Pytel, G. Kluka, A. Szymonik
{"title":"驱动遗传算法的模糊方法","authors":"Krzysztof Pytel, G. Kluka, A. Szymonik","doi":"10.1109/ROMOCO.2004.240582","DOIUrl":null,"url":null,"abstract":"This article presents two concepts of modified genetic algorithms, they employ a fuzzy logic controller to set a trend individuals' evolution. In the algorithms we use a fuzzy logic controller, evaluating each individual as a parent for the next population. The fuzzy logic controller evaluates all individuals using fitness functions for earlier populations, which help's to keep the knowledge collected in the prior populations. The controller modifies the probability of selection to parents' pool, or probability of mutation, so in the fuzzy controlled genetic algorithms, a number of better quality individuals are larger then in the elementary genetic algorithms. We use the traveling salesman problem (TSP) as illustrations.","PeriodicalId":176081,"journal":{"name":"Proceedings of the Fourth International Workshop on Robot Motion and Control (IEEE Cat. No.04EX891)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Fuzzy methods of driving genetic algorithms\",\"authors\":\"Krzysztof Pytel, G. Kluka, A. Szymonik\",\"doi\":\"10.1109/ROMOCO.2004.240582\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents two concepts of modified genetic algorithms, they employ a fuzzy logic controller to set a trend individuals' evolution. In the algorithms we use a fuzzy logic controller, evaluating each individual as a parent for the next population. The fuzzy logic controller evaluates all individuals using fitness functions for earlier populations, which help's to keep the knowledge collected in the prior populations. The controller modifies the probability of selection to parents' pool, or probability of mutation, so in the fuzzy controlled genetic algorithms, a number of better quality individuals are larger then in the elementary genetic algorithms. We use the traveling salesman problem (TSP) as illustrations.\",\"PeriodicalId\":176081,\"journal\":{\"name\":\"Proceedings of the Fourth International Workshop on Robot Motion and Control (IEEE Cat. No.04EX891)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Fourth International Workshop on Robot Motion and Control (IEEE Cat. No.04EX891)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROMOCO.2004.240582\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fourth International Workshop on Robot Motion and Control (IEEE Cat. No.04EX891)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROMOCO.2004.240582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了两个改进遗传算法的概念,它们采用模糊逻辑控制器来设定个体进化的趋势。在算法中,我们使用模糊逻辑控制器,评估每个个体作为下一个群体的父母。模糊逻辑控制器利用先前种群的适应度函数对所有个体进行评估,有助于保持在先前种群中收集的知识。控制器通过对亲本库的选择概率或突变概率进行修改,使模糊控制遗传算法中较优个体的数量大于初级遗传算法。我们以旅行商问题(TSP)为例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fuzzy methods of driving genetic algorithms
This article presents two concepts of modified genetic algorithms, they employ a fuzzy logic controller to set a trend individuals' evolution. In the algorithms we use a fuzzy logic controller, evaluating each individual as a parent for the next population. The fuzzy logic controller evaluates all individuals using fitness functions for earlier populations, which help's to keep the knowledge collected in the prior populations. The controller modifies the probability of selection to parents' pool, or probability of mutation, so in the fuzzy controlled genetic algorithms, a number of better quality individuals are larger then in the elementary genetic algorithms. We use the traveling salesman problem (TSP) as illustrations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信